نتایج جستجو برای: Character table
تعداد نتایج: 185825 فیلتر نتایج به سال:
The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational character tables are also considered into account.The aim of this paper is to compute the rational character tables of the dicyclic group $T_{4n}$, the groups of order $pq$ and $pqr$. Some general properties of rational charact...
Abstract It is a fun game to complete partial character table of finite group. We show that one can reconstruct missing row or column from given table. The proof relies on deep properties fully ramified characters. Moreover, we extend classification groups with “large” degree started by Snyder and continued Durfee Jensen.
fullerene chemistry is nowadays a well-established field of both theoretical and experimental investigations. this study considers the symmetry of small fullerenes cage c24 and c28. using pm3 program for c24 and c28 fullerenes, oh and td symmetry were confirmed, respectively. the mentioned algorithm to compute the automorphism group of these fullerenes with connectivity and geometry of th...
in this paper we will give the character table of the irreducible rational representations of g=sl (2, q) where q= , p prime, n>o, by using the character table and the schur indices of sl(2,q).
In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).
in this paper we first construct the non-split extension $overline{g}= 2^{6} {^{cdot}}sp(6,2)$ as a permutation group acting on 128 points. we then determine the conjugacy classes using the coset analysis technique, inertia factor groups and fischer matrices, which are required for the computations of the character table of $overline{g}$ by means of clifford-fischer theory. there are two inerti...
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
the non-split extension group $overline{g} = 5^3{^.}l(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in ly. the group $overline{g}$ in turn has l(3,5) and $5^2{:}2.a_5$ as inertia factors. the group $5^2{:}2.a_5$ is of order 3 000 and is of index 124 in l(3,5). the aim of this paper is to compute the fischer-clifford matrices of $overline{g}$, which together with associated parti...
in this paper we give some general results on the non-splitextension group $overline{g}_{n} = 2^{2n}{^{cdot}}sp(2n,2), ngeq2.$ we then focus on the group $overline{g}_{4} =2^{8}{^{cdot}}sp(8,2).$ we construct $overline{g}_{4}$ as apermutation group acting on 512 points. the conjugacy classes aredetermined using the coset analysis technique. then we determine theinertia factor groups and fischer...
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید