نتایج جستجو برای: C$^*$-algebra
تعداد نتایج: 1115529 فیلتر نتایج به سال:
we commence by using from a new norm on l1(g) the -algebra of all integrable functions on locally compact group g, to make the c-algebra c(g). consequently, we find its dual b(g), which is a banach algebra so-called fourier-stieltjes algebra, in the set of all continuous functions on g. we consider most of important basic theorems about this algebra. this consideration leads to a rather com...
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
let $a$ be a $c^*$-algebra and $e$ be a left hilbert $a$-module. in this paper we define a product on $e$ that making it into a banach algebra and show that under the certain conditions $e$ is arens regular. we also study the relationship between derivations of $a$ and $e$.
it is shown that every almost linear bijection $h : arightarrow b$ of a unital $c^*$-algebra $a$ onto a unital$c^*$-algebra $b$ is a $c^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in a$, all $y in a$, and all $nin mathbb z$, andthat almost linear continuous bijection $h : a rightarrow b$ of aunital $c^*$-algebra $a$ of real rank zero onto a unital$c^*$-algebra...
A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...
in this paper, we generalize some results from hilbert c*-modules to pro-c*-algebra case. we also give a new proof of the known result that l2(a) is ahilbert module over a pro-c*-algebra a.
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
In this paper we look at the K-theory of a specific C*-algebra closely related to the irrational rotation algebra. Also it is shown that any automorphism of a C*-algebra A induces group automorphisms of K_{1}(A) amd K_{0}(A) in an obvious way. An interesting problem for any C*-algebra A is to find out whether, given an automorphism of K_{0}(A) and an automorphism of K_{1}(A), we can lift them t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید