نتایج جستجو برای: Benzenoid graph
تعداد نتایج: 198322 فیلتر نتایج به سال:
zagreb indices belong to better known and better researched topological indices. weinvestigate here their ability to discriminate among benzenoid graphs and arrive at some quiteunexpected conclusions. along the way we establish tight (and sometimes sharp) lower andupper bounds on various classes of benzenoids.
A benzenoid graph is a finite connected plane graph with no cut vertices in which every interior region is bounded by a regular hexagon of a side length one. A benzenoid graph G is elementary if every edge belongs to a 1-factor of G. A hexagon h of an elementary benzenoid graph is reducible, if the removal of boundary edges and vertices of h results in an elementary benzenoid graph. We characte...
a recently published paper [t. došlić, this journal 3 (2012) 25-34] considers the zagrebindices of benzenoid systems, and points out their low discriminativity. we show thatanalogous results hold for a variety of vertex-degree-based molecular structure descriptorsthat are being studied in contemporary mathematical chemistry. we also show that theseresults are straightforwardly obtained by using...
the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.
The resonance graph of a benzenoid graph G has the 1-factors of G as vertices, two 1-factors being adjacent if their symmetric difference forms the edge set of a hexagon of G. It is proved that the smallest number of elementary cuts that cover a catacondensed benzenoid graph equals the dimension of a largest induced hypercube of its resonance graph.
The Fibonacci dimension fdim(G) of a graph G was introduced in [1] as the smallest integer d such that G admits an isometric embedding into Γd, the d-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacon...
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
A topological index of a graph is a numeric quantity related to a structure of a molecule which is invariant under graph automorphism. Recently, Ghorbani and Hosseinzadeh introduced Fourth Zagreb index of graphs. In this paper we determine a closed formula of this new topological index of the famous Benzenoid family named Circumcoronene series of Benzenoid Hk.
The Fibonacci dimension fdim(G) of a graph G was introduced in [7] as the smallest integer d such that G admits an isometric embedding into Qd, the d-dimensional Fibonacci cube. A somewhat new combinatorial characterization of the Fibonacci dimension is given, which enables more comfortable proofs of some previously known results. In the second part of the paper the Fibonacci dimension of the r...
A Clar set of a benzenoid graph B is a maximum set of independent alternating hexagons over all perfect matchings of B. The Clar number of B, denoted by Cl(B), is the number of hexagons in a Clar set for B. In this paper, we first prove some results on the independence number of subcubic trees to study the Clar number of catacondensed benzenoid graphs. As the main result of the paper we prove a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید