نتایج جستجو برای: Banach ternary algebra
تعداد نتایج: 100522 فیلتر نتایج به سال:
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
w. a. dudek, m. shahryari, representation theory of polyadic groups, algebra and representation theory, 2010. و a. borowiec, w. a. dudek, s. duplij, bi-element representations of ternary groups, comminications in algebra 34 (2006). هدف اصلی این پایان نامه، معرفی نمایش های گروه های n-تایی و بررسی ویژگی های اصلی آن ها با تمرکز روی گروه های سه تایی است.
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
let a be a banach algebra and e be a banach a-bimodule then s = a e, the l1-direct sum of a and e becomes a module extension banach algebra when equipped with the algebras product (a; x):(a′; x′) = (aa′; a:x′ + x:a′). in this paper, we investigate △-amenability for these banach algebras and we show that for discrete inverse semigroup s with the set of idempotents es, the module extension bana...
let $a$ be a banach algebra and $x$ be a banach $a$-bimodule. then ${mathcal{s}}=a oplus x$, the $l^1$-direct sum of $a$ and $x$ becomes a module extension banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ in this paper, we investigate biflatness and biprojectivity for these banach algebras. we also discuss on automatic continuity of derivations on ${mathcal{s...
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
in this paper we investigate some hereditary properties of amenability modulo an ideal of banach algebras. we show that if (e) is a bounded approximate identity modulo i of a banach algebra a and x is a neo-unital modulo i, then (e) is a bounded approximate identity for x. moreover we show that amenability modulo an ideal of a banach algebra a can be only considered by the neo-unital modulo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید