نتایج جستجو برای: Arens regular Banach algebra
تعداد نتایج: 203202 فیلتر نتایج به سال:
let $a$ be a $c^*$-algebra and $e$ be a left hilbert $a$-module. in this paper we define a product on $e$ that making it into a banach algebra and show that under the certain conditions $e$ is arens regular. we also study the relationship between derivations of $a$ and $e$.
In this paper we define the notion of weak Arens regular Banach algebras and extend the concept of quasi-multipliers to this certain class of Banach algebras. Among other the relationship between Arens regularity of the algebra A∗∗ of a weak Arens regular Banach algebra A and the space QMr(A∗) of all bilinear and separately continuous right quasimultipliers of A∗ is investigated. Further, we st...
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
let $mathcal{a}$ be a banach algebra with bai and $e$ be an introverted subspace of $mathcal{a'}$.in this paper we study the quotient arens regularity of $mathcal{a}$ with respect to $e$ and prove that the group algebra $l^1(g)$ for a locally compact group $g$, is quotient arens regular with respect to certain introverted subspace $e$ of $l^infty(g)$.some related result are given as well.
motivated by an arens regularity problem, we introduce the concepts of matrix banach space and matrix banach algebra. the notion of matrix normed space in the sense of ruan is a special case of our matrix normed system. a matrix banach algebra is a matrix banach space with a completely contractive multiplication. we study the structure of matrix banach spaces and matrix banach algebras. then we...
Let $mathcal{A}$ be a Banach algebra with BAI and $E$ be an introverted subspace of $mathcal{A}^prime$. In this paper we study the quotient Arens regularity of $mathcal{A}$ with respect to $E$ and prove that the group algebra $L^1(G)$ for a locally compact group $G$, is quotient Arens regular with respect to certain introverted subspace $E$ of $L^infty(G)$. Some related result are given as well.
Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$ is Arens regular. We also study the relationship between derivations of $A$ and $E$.
let a be a banach algebra and x be a banach a-bimodule. in this paper, we dene a new product on a x and generalize the module extension banach algebras. we obtain characterizations of arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new banach algebra.
Let $X$, $Y$ and $Z$ be Banach spaces and $f:Xtimes Y longrightarrow Z$ a bounded bilinear map. In this paper we study the relation between Arens regularity of $f$ and the reflexivity of $Y$. We also give some conditions under which the Arens regularity of a Banach algebra $A$ implies the Arens regularity of certain Banach right module action of $A$ .
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we study the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$, which inherit from th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید