نتایج جستجو برای: Additive functional equation
تعداد نتایج: 865388 فیلتر نتایج به سال:
moslehian and mirmostafaee, investigated the fuzzystability problems for the cauchy additive functional equation, the jensen additivefunctional equation and the cubic functional equation in fuzzybanach spaces. in this paper, we investigate thegeneralized hyers–-ulam--rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy banachspaces. also, we will show ...
Moslehian and Mirmostafaee, investigated the fuzzystability problems for the Cauchy additive functional equation, the Jensen additivefunctional equation and the cubic functional equation in fuzzyBanach spaces. In this paper, we investigate thegeneralized Hyers–-Ulam--Rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy Banachspaces. Also, we will show ...
hensel [k. hensel, deutsch. math. verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. then $|x...
the stability problem of the functional equation was conjectured by ulam and was solved by hyers in the case of additive mapping. baker et al. investigated the superstability of the functional equation from a vector space to real numbers.in this paper, we exhibit the superstability of $m$-additive maps on complete non--archimedean spaces via a fixed point method raised by diaz and margolis.
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
هدف اصلی ما در این پایان نامه، مطالعه عملگردهای مثبت و نگاشت های حالت روی * – جبرهای باناخ و –c* جبرها می باشد. در وهله بعدی *- ایزومورفیسم های بین –c* جبرهای یکدار را مورد مطالعه قرای می دهیم . علاوه بر موارد فوق، پایداری –j* مشتقها روی –j* جبرها را به عنوان کاربردی از قضیه نقطه ثابت تعمیم یافته مورد مطالعه قرار می دهیم و نهایتا با پیدا کردن حل عمومی برای معادله تابعی ترکیبی چهارتایی جمعی، درج...
in this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of ratz.
In this paper, we define a generalized additive set-valued functional equation, which is related to the following generalized additive functional equation: f (x 1 + · · · + x l) = (l – 1)f x 1 + · · · + x l–1 l – 1 + f (x l) for a fixed integer l with l > 1, and prove the Hyers-Ulam stability of the generalized additive set-valued functional equation.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید