نتایج جستجو برای: ANFIS-subtractive clustering
تعداد نتایج: 108422 فیلتر نتایج به سال:
slope stability analysis is an enduring research topic in the engineering and academic sectors. accurate prediction of the factor of safety (fos) of slopes, their stability, and their performance is not an easy task. in this work, the adaptive neuro-fuzzy inference system (anfis) was utilized to build an estimation model for the prediction of fos. three anfis models were implemented including g...
Churn prediction is a useful tool to predict customer at churn risk. By accurate prediction of churners and non-churners, a company can use the limited marketing resource efficiently to target the churner customers in a retention marketing campaign. Accuracy is not the only important aspect in evaluating a churn prediction models. Churn prediction models should be both accurate and comprehensib...
This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...
shear wave velocity (vs) data are key information for petrophysical, geophysical and geomechanical studies. although compressional wave velocity (vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. furthermore, measurement of shear wave velocity is to some extent costly. this study proposes a novel methodolo...
To accurately estimate the state of charge of a lithium-ion battery pack used in electric vehicles, a neurofuzzy system is proposed. The subtractive clustering is used to determine the structure and the initial parameters of the neuro-fuzzy system to reduce heuristic errors. The algorithm of adaptive neuro-fuzzy inference (ANFIS) is adopted to optimize the parameters of the neuro-fuzzy system. ...
rainfall-runoff is one of complex hydrological processes that is affected by a variety of physical and hydrological factors. in this study statistical method armax model, neural network, neuro-fuzzy (anfis subtractive clustering and grid partition) and two hybrid models of this methods were used to simulate rainfall-runoff and prediction of streamflow. in each method optimum structure was deter...
the late detection of the kick (the entrance of underground fluids into oil wells) leads to oil wellblowouts. it causes human life loss and imposes a great deal of expenses on the petroleum industry.this paper presents the application of adaptive neuro-fuzzy inference system designed for an earlierkick detection using measurable drilling parameters. in order to generate the initial fuzzy infere...
The late detection of the kick (the entrance of underground fluids into oil wells) leads to oil well blowouts. It causes human life loss and imposes a great deal of expenses on the petroleum industry. This paper presents the application of adaptive neuro-fuzzy inference system designed for an earlier kick detection using measurable drilling parameters. In order to generate the initial fuzzy inf...
This paper investigates the effectiveness of four different soft computing methods, namely radial basis neural network (RBNN), adaptive neuro fuzzy inference system (ANFIS) with subtractive clustering (ANFIS-SC), ANFIS with fuzzy c-means clustering (ANFIS-FCM) and M5 model tree (M5Tree), for predicting the ultimate strength and strain of concrete cylinders confined with fiber-reinforced polymer...
The presented control scheme utilizes Adaptive Neuro Fuzzy Inference System (ANFIS) controller to track a reference engine rotational speed and disturbance rejection during engine idling. To evaluate the performance of the controller a model of the engine is simulated and simulation results presented. ANFIS implements a first order Sugeno-style fuzzy system. It is a method for tuning an existin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید