نتایج جستجو برای: 4-term arithmetic progression

تعداد نتایج: 1989397  

M. H. Shirdareh Haghighi P. Salehi Nowbandegani

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

Journal: :bulletin of the iranian mathematical society 2012
m. h. shirdareh haghighi p. salehi nowbandegani

{sl let $[n]={1,dots, n}$ be colored in $k$ colors. a rainbow ap$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. conlon, jungi'{c} and radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow ap(4) free, when $n$ is even. based on their construction, we show that such a coloring of ...

Journal: :Journal of Computer and System Sciences 2012

2006
Ernie Croot

How few three-term arithmetic progressions can a subset S ⊆ ZN := Z/NZ have if |S| ≥ υN? (that is, S has density at least υ). Varnavides [4] showed that this number of arithmetic-progressions is at least c(υ)N for sufficiently large integers N ; and, it is well-known that determining good lower bounds for c(υ) > 0 is at the same level of depth as Erdös’s famous conjecture about whether a subset...

Journal: :Journal of integer sequences 2017
Abdoul Aziz Ciss Dustin Moody

In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...

2008
IAN KIMING

x1 − 2x2 + x3 = 0 x2 − 2x3 + x4 = 0 are given by (x1, x2, x3, x4) = (±1,±1,±1,±1). Now, the above variety is an intersection between 2 quadrics in P. In general – i.e., except for the possibility of the variety being reducible or singular – an intersection between 2 quadrics in P is (isomorphic to) an elliptic curve and there is an algorithm that brings the curve to Weierstraß form by means of ...

Journal: :The American Mathematical Monthly 2011
Hayri Ardal Tom C. Brown Veselin Jungic

In this note we prove that there is a linear ordering of the set of real numbers for which there is no monotonic 3-term arithmetic progression. This answers the question (asked by Erdős and Graham) of whether or not every linear ordering of the reals must have a monotonic k-term arithmetic progression for every k.

2009
L. HAJDU

We give a complete characterization of so called powerful arithmetic progressions, i.e. of progressions whose kth term is a kth power for all k. We also prove that the length of any primitive arithmetic progression of powers can be bounded both by any term of the progression different from 0 and ±1, and by its common difference. In particular, such a progression can have only finite length.

Journal: :Combinatorics, Probability & Computing 2003
Veselin Jungic Jacob Licht Mohammad Mahdian Jaroslav Nesetril Rados Radoicic

The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoičić conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distin...

Journal: :Proceedings of the London Mathematical Society 2012

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید