نتایج جستجو برای: 4-Sum connectivity index
تعداد نتایج: 1761546 فیلتر نتایج به سال:
The m-order connectivity index (G) m of a graph G is 1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i m d d d G where 1 2 1 ... i i im d d d runs over all paths of length m in G and i d denotes the degree of vertex i v . Also, 1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i ms d d d X G is its m-sum connectivity index. A dendrimer is an artificially manufactured or synth...
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
the first extended zeroth-order connectivity index of a graph g is defined as 0 1/2 1 ( ) ( ) , v v v g g d where v (g) is the vertex set of g, and v d is the sum of degrees of neighbors of vertex v in g. we give a sharp lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and pendant vertices,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید