نتایج جستجو برای: strongly $z$-ideal
تعداد نتایج: 445621 فیلتر نتایج به سال:
It is well-known that the sum of two $z$-ideals in $C(X)$ is either $C(X)$ or a $z$-ideal. The main aim of this paper is to study the sum of strongly $z$-ideals in ${mathcal{R}} L$, the ring of real-valued continuous functions on a frame $L$. For every ideal $I$ in ${mathcal{R}} L$, we introduce the biggest strongly $z$-ideal included in $I$ and the smallest strongly $z$-ideal containing ...
in this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. we study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. for strongly z-ideals, we analyze prime ideals using the concept of zero sets. moreover, it is proven that the intersection of all zero sets of a prime ideal of c(l),...
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
let $r$ be a commutative ring. the purpose of this article is to introduce a new class of ideals of r called weakly irreducible ideals. this class could be a generalization of the families quasi-primary ideals and strongly irreducible ideals. the relationships between the notions primary, quasi-primary, weakly irreducible, strongly irreducible and irreducible ideals, in different rings, has bee...
Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of continuous real-valued functions on $L$. We show that the lattice $Zid(mathcal{R}L)$ of $z$-ideals of $mathcal{R}L$ is a normal coherent Yosida frame, which extends the corresponding $C(X)$ result of Mart'{i}nez and Zenk. This we do by exhibiting $Zid(mathcal{R}L)$ as a quotient of $Rad(mathcal{R}L)$, the ...
let $l$ be a completely regular frame and $mathcal{r}l$ be the ring of continuous real-valued functions on $l$. we show that the lattice $zid(mathcal{r}l)$ of $z$-ideals of $mathcal{r}l$ is a normal coherent yosida frame, which extends the corresponding $c(x)$ result of mart'{i}nez and zenk. this we do by exhibiting $zid(mathcal{r}l)$ as a quotient of $rad(mathcal{r}l)$, the ...
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of , for any multiplication subset S of...
let $r$ be an associative ring with identity. an element $x in r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if there exist $g in g$, $n in mathbb{z}$ and $r in r$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). a ring $r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if every element of $r$ is $mathbb{z}g$-regular (resp. strongly $...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید