A real-valued function f of a real variable is said to be (p-slowly varying ((p-s .v.) if limn_ . rp (x) [ f (x + a) f (x)] = 0 for each a. It is said to be uniformly 9-slowly varying (u . (P-s .v .) if limn-. . sup, e r rp(x) ; f (x-a) f (x)I =0 for every bounded interval I. It is supposed throughout that rp is positive and increasing . It is proved that if w increases rapidly enough, then eve...