نتایج جستجو برای: signless Laplacian resolvent energy
تعداد نتایج: 679943 فیلتر نتایج به سال:
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in th...
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
A signless Laplacian eigenvalue of a graph G is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, some necessary and sufficient conditions for a graph with one main signless Laplacian eigenvalue or two main signless Laplacian eigenvalues are given. And the trees and unicyclic graphs with exactly two main signless L...
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $a(g)$ the adjacency matrix of $g$. the signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.
For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
Let η(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper, bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimize...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید