نتایج جستجو برای: proximinal
تعداد نتایج: 61 فیلتر نتایج به سال:
Let Y be an E-proximinal (respectively, a strongly proximinal) subspace of X. We prove that Y is (strongly) ball proximinal in X if and only if for any x ∈ X with (x+ Y ) ∩BX 6= ∅, (x+ Y ) ∩BX is (strongly) proximinal in x+Y . Using this characterization and a smart construction, we obtain three Banach spaces Z ⊂ Y ⊂ X such that Z is ball proximinal in X and Y/Z is ball proximinal in X/Z, but Y...
We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...
We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.
In this paper, we show that if E is an order continuous Köthe function space and Y is a separable subspace ofX, then E(Y ) is ball proximinal in E(X) if and only if Y is ball proximinal in X. As a consequence, E(Y ) is proximinal in E(X) if and only if Y is proximinal in X. This solves an open problem of Bandyopadhyay, Lin and Rao. It is also shown that if E is a Banach lattice with a 1-uncondi...
We show that a separable proximinal subspace of X, say Y is strongly proximinal (strongly ball proximinal) if and only if Lp(I, Y ) is strongly proximinal (strongly ball proximinal) in Lp(I,X), for 1 ≤ p <∞. The p =∞ case requires a stronger assumption, that of ’uniform proximinality’. Further, we show that a separable subspace Y is ball proximinal in X if and only if Lp(I, Y ) is ball proximin...
A known, and easy to establish, fact in Best Approximation Theory is that, if the unit ball of a subspace G of a Banach space X is proximinal in X, then G itself is proximinal in X. We are concerned in this article with the reverse implication, as the knowledge of whether the unit ball is proximinal or not is useful in obtaining information about other problems. We show, by constructing a count...
Let Y be a proximinal subspace of finite codimension of c0. We show that Y is proximinal in ∞ and the metric projection from ∞ onto Y is Hausdorff metric continuous. In particular, this implies that the metric projection from ∞ onto Y is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous.
In this paper, we show that a closed convex set C of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space isometrically containing it if and only if C is locally (weakly, resp.) compact. As a consequence, it is proved that local compactness of C is also equivalent to that for every Banach space Y isometrically containing it, the metric projection from Y to C is nonemp...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید