نتایج جستجو برای: mordell
تعداد نتایج: 596 فیلتر نتایج به سال:
It is explained how the Mordell integral ∫ R e −2πzx cosh(πx) dx unifies the mock theta functions, partial (or false) theta functions, and some of Zagier’s quantum modular forms. As an application, we exploit the connections between q-hypergeometric series and mock and partial theta functions to obtain finite evaluations of the Mordell integral for rational choices of τ and z. 1. The Mordell In...
1. What is an elliptic curve? 2 2. Mordell-Weil Groups 5 2.1. The Group Law on a Smooth, Plane Cubic Curve 5 2.2. Reminders on Commutative Groups 8 2.3. Some Elementary Results on Mordell-Weil Groups 9 2.4. The Mordell-Weil Theorem 11 2.5. K-Analytic Lie Groups 13 3. Background on Algebraic Varieties 15 3.1. Affine Varieties 15 3.2. Projective Varieties 18 3.3. Homogeneous Nullstellensätze 20 3...
‎‎In the category of Mordell curves (E_D:y^2=x^3+D) with nontrivial torsion groups we find curves of the generic rank two as quadratic twists of (E_1), ‎and of the generic rank at least two and at least three as cubic twists of (E_1). ‎Previous work‎, ‎in the category of Mordell curves with trivial torsion groups‎, ‎has found infinitely many elliptic curves with ...
in the category of mordell curves (e_d:y^2=x^3+d) with nontrivial torsion groups we find curves of the generic rank two as quadratic twists of (e_1), and of the generic rank at least two and at least three as cubic twists of (e_1). previous work, in the category of mordell curves with trivial torsion groups, has found infinitely many elliptic curves with rank at least seven as sextic tw...
We describe how to prove the Mordell-Weil theorem for Jacobians of hyperelliptic curves over Q and how to compute the rank and generators for the Mordell-Weil group.
We say a lattice Λ is rigid if it its isometry group acts irreducibly on its ambient Euclidean space. We say Λ is Mordell-Weil if there exists an abelian variety A over a number field K such that A(K)/A(K)tor, regarded as a lattice by means of its height pairing, contains at least one copy of Λ. We prove that every rigid lattice is Mordell-Weil. In particular, we show that the Leech lattice can...
Let φ : P → P be a morphism of degree d ≥ 2 defined over C. The dynamical Mordell–Lang conjecture says that the intersection of an orbit Oφ(P ) and a subvariety X ⊂ P is usually finite. We consider the number of linear subvarieties L ⊂ P such that the intersection Oφ(P ) ∩ L is “larger than expected.” When φ is the d-power map and the coordinates of P are multiplicatively independent, we prove ...
We develop a general method for bounding Mordell-Weil ranks of Jacobians of arbitrary curves of the form y = f(x). As an example, we compute the Mordell-Weil ranks over Q and Q( √ −3) for a non-hyperelliptic curve of genus 8.
We prove that the Mordell-Tornheim zeta value of depth r can be expressed as a rational linear combination of products of the Mordell-Tornheim zeta values of lower depth than r when r and its weight are of different parity.
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید