نتایج جستجو برای: indecomposable module
تعداد نتایج: 67636 فیلتر نتایج به سال:
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
a module is said to be $pi$-extending provided that every projection invariant submodule is essential in a direct summand of the module. in this paper, we focus on direct summands and indecomposable decompositions of $pi$-extending modules. to this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
It is well-known that any semiperfect A ring has a decomposition as a direct sum (product) of indecomposable subrings A = A1 ⊕ · · · ⊕ An such that the Ai-Mod are indecomposable module categories. Similarly any coalgebra C over a field can be written as a direct sum of indecomposable subcoalgebras C = ⊕ I Ci such that the categories of Ci-comodules are indecomposable. In this paper a decomposit...
let $mathbb{f}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted lie superalgebra over $mathbb{f}$. it is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. these quotient superalgebras are called the generalized reduced enveloping ...
A module of a graph is a non-empty subset of vertices such that every non-module vertex is either connected to all or none of the module vertices. An indecomposable graph contains no non-trivial module (modules of cardinality 1 and |V | are trivial). We present an algorithm to compute indecomposability preserving elimination sequence, which is faster by a factor of |V | compared to the algorith...
The source of a simple kG-module, for a finite p-solvable group G and an algebraically closed field k of prime characteristic p, is an endo-permutation module (see [Pu1] or [Th]). L. Puig has proved, more precisely, that this source must be isomorphic to the cap of an endo-permutation module of the form ⊗ Q/R∈S Ten P Q Inf Q Q/R(MQ/R), where MQ/R is an indecomposable torsion endo-trivial module...
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
Let R be a left pure semisimple ring such that there are no nonzero homomorphisms from preinjective modules to non-preinjective indecomposable modules in R-mod, and let W be the left key R-module; i.e., W is the direct sum of all non-isomorphic non-preinjective indecomposable direct summands of products of preinjective left R-modules. We show that if the module W is endofinite, then R is a ring...
It is proved that an irreducible quasifinite W∞-module is a highest or lowest weight module or a module of the intermediate series; a uniformly bounded indecomposable weight W∞module is a module of the intermediate series. For a nondegenerate additive subgroup Γ of F, where F is a field of characteristic zero, there is a simple Lie or associative algebra W(Γ, n)(1) spanned by differential opera...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید