نتایج جستجو برای: homomorphismin $C^*$-algebras and Lie $C^*$-algebras
تعداد نتایج: 16983442 فیلتر نتایج به سال:
in this paper, using fixed point method, we prove the generalized hyers-ulam stability of random homomorphisms in random $c^*$-algebras and random lie $c^*$-algebras and of derivations on non-archimedean random c$^*$-algebras and non-archimedean random lie c$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
we have devided the thesis in to five chapters. the first recollects facts from purely algebraic theory of jordan algebras and also basic properties of jb and jb* - algebras which are needed in the sequel. in the second chapter we extend to jb* - algebras, a classical result due to cleveland [8]. this result shows shows the weakness of jb* - norm topology on a jb* - algebera. in chapter three, ...
در این رساله، ابتدا مفهوم *c- جبر را بیان می کنیم، سپس با تجزیه و تحلیل دقیق مقاله های dr. alexander a. katz, a note on two-sided ideals in locally c?-algebras, apr 2013. dr. a. a. katz,dr. o. friedman, on projective limits of real c?- and jordan operator algebras, oct 2005. مفهوم *c- جبرموضعی و قیاس های ژوردان و حقیقی از *c- جبرهای موضعی مختلط بیان می شود. در نهایت نشان می دهیم که اگر a یک ...
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
چکیده: در این رساله ابتدا مفهوم c*-جبر را بیان می کنیم سپس با تجزیه وتحلیل دقیق مقاله های on frames in hilbert modules over pro-c*-algebras, projections on hilbert modules over locally c*-algebras. مفهوم c*-جبر موضعی و قاب ضربگرها در مدول های هیلبرت روی c*-جبرموضعی بیان می شود و نشان می دهیم برخی از ویژگیهای قابها در c*-مدول های هیلبرت برای قاب ضربگرها در مدول های هیلبرت روی c*-جبرموض...
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید