نتایج جستجو برای: ‎expected number of real zeros‎

تعداد نتایج: 21221171  

Journal: :bulletin of the iranian mathematical society 2011
s. rezakhah s. shemehsavar

Journal: :bulletin of the iranian mathematical society 2011
s. rezakhah s. shemehsavar

Journal: :Mathematical Proceedings of the Cambridge Philosophical Society 2016

Journal: :Journal of Mathematical Analysis and Applications 2015

Journal: :Journal of Mathematical Analysis and Applications 1974

Journal: :International Journal of Pure and Apllied Mathematics 2014

Journal: :Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 1989

Journal: :bulletin of the iranian mathematical society 0
n. nyamoradi h. zangeneh

we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

&nbsp;Let $ a_0&nbsp;(omega),&nbsp;a_1&nbsp;(omega),&nbsp;a_2&nbsp;(omega), dots,&nbsp;a_n&nbsp;(omega)$&nbsp;be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr,&nbsp;A)$. There are many known results for the expected number of real zeros of a polynomial&nbsp;$ a_0&nbsp;(omega) psi_0(x)+&nbsp;a_1&nbsp;(omega)psi_1 (x)+,&nbsp;a_2&nbsp;(omega)psi_2 (x)+...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید