نتایج جستجو برای: definable function
تعداد نتایج: 1215824 فیلتر نتایج به سال:
ما قضیه هربراند را در چارچوب منطق پیوسته ثابت می کنیم. صرف نظر از جزئیات، قضیه هربراند منطق مرتبه اول را به منطق گزاره ای فرو می کاهد. ما روی یک حالت خاص که معمولاً با ابزار ساده مدل تئوریک ثابت می شود، تمرکز می کنیم. در حالت مرتبه اول، قضیه هربراند کاربردهای مهمی در اندازه های موتیویک دارد که در آن یک مشخص سازی از تابع های تعریف پذیر مورد نیاز است. در این پایان نامه، یک حالت منطق پیوسته از قضی...
We show that the class of locally finite varieties omitting type 1 has the following properties. This class (1) is definable by an idempotent, linear, strong Mal’cev condition in a language with one 4-ary function symbol. (2) is not definable by an idempotent, linear, strong Mal’cev condition in a language with only one function symbol of arity strictly less than 4. (3) is definable by an idemp...
Let R = (R,<,+, ·, . . . ) be a non-valuational weakly o-minimal real closed field, I a definable convex open subset of R and f : I → R a definable function. We prove that {x ∈ I : f ′(x) exists in R} is definable and f ′ is definable if f is differentiable.
Let U denote the Urysohn sphere and consider U as a metric structure in the empty continuous signature. We prove that every definable function U → U is either a projection function or else has relatively compact range. As a consequence, we prove that many functions natural to the study of the Urysohn sphere are not definable. We end with further topological information on the range of the defin...
Let R be an o-minimal expansion of a divisible ordered abelian group (R, <, +, 0, 1) with a distinguished positive element 1. Then the following dichotomy holds: Either there is a 0-definable binary operation · such that (R, <, +, ·, 0, 1) is an ordered real closed field; or, for every definable function f : R → R there exists a 0-definable λ ∈ {0} ∪ Aut(R, +) with limx→+∞[f(x) − λ(x)] ∈ R. Thi...
Given an o-minimal expansion M of a real closed field R which is not polynomially bounded. Let P∞ denote the definable indefinitely Peano differentiable functions. If we further assume that M admits P∞ cell decomposition, each definable closed set A ⊂ Rn is the zero-set of a P∞ function f : Rn → R. This implies P∞ approximation of definable continuous functions and gluing of P∞ functions define...
Let M be a structure in some language. Assume M has elimination of imaginaries. Let X be a definable set. Definable will mean “definable with parameters.” By a definable topology, we mean a definable family of subsets {By ⊂ X}y∈Y which form the basis for some topology on X. The fact that these form a basis for a topology amounts to the claim that if y1, y2 have By1 ∩By2 6= ∅, then for every x ∈...
An Euler characteristic χ is definable if for every definable function f : X → Y and every r ∈ R, the set {y ∈ Y : χ(f−1(y)) = r} is definable. If R = Z/nZ and M is a finite structure, there is a (unique) Euler characteristic χ : Def(M) → Z/nZ assigning every set its size mod n. This χ is always strong and ∅definable. If M is an ultraproduct of finite structures, then there is a canonical stron...
In 1934, Whitney gave a necessary and sufficient condition on a jet of order m on a closed subset E of R to be the jet of order m of a C-function; jets satisfying this condition are known as C-Whitney fields. Later, Paw lucki and Kurdyka proved that subanalytic C-Whitney fields are jets of order m of sybanalytic C-functions. Here, we work in an o-minimal expansion of a real closed field and pro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید