نتایج جستجو برای: artin groups
تعداد نتایج: 729757 فیلتر نتایج به سال:
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators any Artin group generate an obvious right-angled subgroup. We consider a larger set elements consisting all centers irreducible spherical special subgroups group, conjecture sufficiently large powers those This alleged subgroup is in some sense as possible; its nerve homeomorphic to ambient group. ver...
Pride groups, or “groups given by presentations in which each defining relator involves at most two types of generators”, include Coxeter groups, Artin groups, triangles of groups, and Vinberg’s groups defined by periodic paired relations. We show that every non-spherical Pride group that is not a triangle of groups satisfies the Tits alternative.
where the words on each side of these relations are sequences of mij letters where ai and aj alternate in the sequence. The matrix of values mij is a Coxeter matrix M = (mij)i,j∈I on I. These groups generalize the braid groups established in 1925 by E. Artin in a natural way and therefore we suggest naming them Artin groups. If one adds the relations ai = 1 to the relations in the presentation ...
Artin groups (also known as Artin-Tits groups) are generalizations of Artin’s braid groups. This paper concerns Artin groups of spherical type, that is, those whose corresponding Coxeter group is finite, as is the case for the braid groups. We compute presentations for the commutator subgroups of the irreducible spherical-type Artin groups, generalizing the work of Gorin and Lin [GL69] on the b...
We establish sufficient conditions implying semistability and connectivity at infinity properties for CAT(0) cubical complexes. We use this, along with the geometry of cubical K(π, 1)’s to give a complete description of the higher connectivity at infinity properties of right angled Artin groups. Among other things, this determines which right angled Artin groups are duality groups. Applications...
This paper is a short survey on four basic questions on Artin-Tits groups: the torsion, the center, the word problem, and the cohomology (K(π, 1) problem). It is also an opportunity to prove three new results concerning these questions: (1) if all free of infinity Artin-Tits groups are torsion free, then all Artin-Tits groups will be torsion free; (2) If all free of infinity irreducible non-sph...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید