Let $(Sigma_P,sigma_P)$ be the space of a spacing shifts where $Psubset mathbb{N}_0=mathbb{N}cup{0}$ and $Sigma_P={sin{0,1}^{mathbb{N}_0}: s_i=s_j=1 mbox{ if } |i-j|in P cup{0}}$ and $sigma_P$ the shift map. We will show that $Sigma_P$ is mixing if and only if it has almost specification property with at least two periodic points. Moreover, we show that if $h(sigma_P)=0$, then $Sigma_...