نتایج جستجو برای: Non-Self Adjoint Operators
تعداد نتایج: 1873100 فیلتر نتایج به سال:
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
Depending on the behaviour of complex-valued electromagnetic potential in neighbourhood infinity, pseudomodes one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic approach which goes beyond standard semi-classical setting. Furthermore, this results substantial progress achieving optimal conditions and conclusions as well covering w...
in this paper, we find explicit solution to the operator equation$txs^* -sx^*t^*=a$ in the general setting of the adjointable operators between hilbert $c^*$-modules, when$t,s$ have closed ranges and $s$ is a self adjoint operator.
this paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. at first, the non-self-adjoint spectral problem is derived. then its adjoint problem is calculated. after that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. finally the convergence ...
Spectral stability analysis for solitary waves is developed in the context of the Hamiltonian system of coupled nonlinear Schrödinger equations. The linear eigenvalue problem for a non-self-adjoint operator is studied with two self-adjoint matrix Schrödinger operators. Sharp bounds on the number and type of unstable eigenvalues in the spectral problem are found from the inertia law for quadrati...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید