نتایج جستجو برای: Mittag-Leffler stability
تعداد نتایج: 300784 فیلتر نتایج به سال:
Stability of fractional-order nonlinear dynamic systems is studied using Lyapunov direct method with the introductions of Mittag–Leffler stability and generalized Mittag–Leffler stability notions. With the definitions of Mittag–Leffler stability and generalized Mittag–Leffler stability proposed, the decaying speed of the Lyapunov function can bemore generally characterized which include the exp...
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
*Correspondence: [email protected] School of Mathematical Science, Anhui University, Hefei, P.R. China Abstract In this paper, using the theory of q-fractional calculus, we deal with the q-Mittag-Leffler stability of q-fractional differential systems, and based on it, we analyze the direct Lyapunov method of q-fractional differential systems. Several sufficient criteria are established to guaran...
this article is devoted to study of the autoconvolution equations and generalized mittag-leffler functions. these types of equations are given in terms of the laplace transform convolution of a function with itself. we state new classes of the autoconvolution equations of the first kind and show that the generalized mittag-leffler functions are solutions of these types of equations. in view of ...
We give a functorial characterization of Mittag-Leffler modules and strict Mittag-Leffler modules.
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
The multiindex Mittag-Leffler (M-L) function and the multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and integration play a very pivotal role in the theory and applications of generalized fractional calculus. The object of this paper is to investigate the relations that exist between the Riemann-Liouville fractional calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiat...
Let C be a category with strong monomorphic strong coimages, that is, every morphism ƒ of C factors as ƒ = u ° g so that g is a strong epimorphism and u is a strong monomorphism and this factorization is universal. We define the notion of strong Mittag-Leffler property in pro-C. We show that if ƒ : X → Y is a level morphism in pro-C such that ( ) p Y ! " is a strong epimorphism for all β > α, t...
We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Lévy alpha -stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید