نتایج جستجو برای: Michel-Penot subdifferential
تعداد نتایج: 8128 فیلتر نتایج به سال:
-In this paper, we investigate some properties of Michel Penot subdifferentials of locally Lipschitz functions and establish Lagrange multiplier rule in terms of Michel-Penot subdifferentials for nonsmooth mathematical programming problem. Key-Words: Nonsmooth optimization; approximate subdifferentials; generalized gradient; Michel Penot subdifferential; Banach space.
The space of directed sets is a Banach space in which convex compact subsets of Rn are embedded. Each directed set is visualized as a (nonconvex) subset of Rn, which is comprised of a convex, a concave and a mixed-type part. Following an idea of A. Rubinov, the directed subdifferential of a difference of convex (DC) functions is defined as the directed difference of the corresponding embedded c...
In this paper, we establish some results which exhibit an application for Michel–Penot subdifferential in nonsmooth vector optimization problems and vector variational-like inequalities. We formulate vector variational-like inequalities of Stampacchia and Minty type in terms of the Michel–Penot subdifferentials and use these variational-like inequalities as a tool to solve the vector optimizati...
In this paper we study optimization problems with equality and inequality constraints on a Banach space where the objective function and the binding constraints are either differentiable at the optimal solution or Lipschitz near the optimal solution. Necessary and sufficient optimality conditions and constraint qualifications in terms of the Michel–Penot subdifferential are given, and the resul...
in this paper we study optimization problems with infinite many inequality constraints on a banach space where the objective function and the binding constraints are locally lipschitz. necessary optimality conditions and regularity conditions are given. our approach are based on the michel-penot subdifferential.
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
The modification of the Clarke generalized subdiNerentia1 due to Michel and Penot is a useful tool in determining differentiability properties for certain classes of real functions on a normed linear space. The Glteaux differentiability of any real function can be deduced from the GBteaux differentiability of the norm if the function has a directional derivative which attains a constant related...
Monotone operators are of central importance in modern optimization and nonlinear analysis. Their study has been revolutionized lately, due to the systematic use of the Fitzpatrick function. Pioneered by Penot and Svaiter, a topic of recent interest has been the representation of maximal monotone operators by so-called autoconjugate functions. Two explicit constructions were proposed, the first...
We calculate the Clarke and Michel-Penot subdifferentials of the function which maps a symmetric matrix to its mth largest eigenvalue. We show these two subdifferentials coincide, and are identical for all choices of index m corresponding to equal eigenvalues. Our approach is via the generalized directional derivatives of the eigenvalue function, thereby completing earlier studies on the classi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید