نتایج جستجو برای: ‎Laplacian specturam‎

تعداد نتایج: 12682  

Journal: :transactions on combinatorics 2015
shariefuddin pirzada hilal a. ganie

for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues‎ ‎$mu_1$‎, ‎$mu_2$‎, ‎$dots$‎, ‎$mu_{n-1}$‎, ‎$mu_n=0$‎, ‎and signless laplacian eigenvalues $q_1‎, ‎q_2,dots‎, ‎q_n$‎, ‎the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$‎. ‎in th...

Journal: :iranian journal of mathematical chemistry 2014
f fayazi s rahimi sharbaf

a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

Journal: :journal of medical signals and sensors 0
dr hossein rabbani raheleh kafieh mehrdad foroohandeh

in this paper, we try to find a particular combination of wavelet shrinkage and nonlinear diffusion for noise removal in dental images. we selected the wavelet diffusion and modified its automatic threshold selection by proposing new models for speckle related modulus. the laplacian mixture model and circular symmetric laplacian mixture models were evaluated and as it could be expected, the lat...

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

Journal: :journal of linear and topological algebra (jlta) 0
m ghorbani department of mathematics, faculty of science, shahid rajaee teacher training university m hakimi-nezhaad department of math., faculty of science, shahid rajaee teacher training university

‎let $g$ be a graph without an isolated vertex‎, ‎the normalized laplacian matrix $tilde{mathcal{l}}(g)$‎‎is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$‎, where ‎$‎mathcal{‎d}‎$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎g‎$‎‎. ‎the eigenvalues of‎‎$tilde{mathcal{l}}(g)$ are ‎called ‎ ‎ as ‎the ‎normalized laplacian ...

Journal: :transactions on combinatorics 2013
qingqiong cai xueliang li jiangli song

for a simple digraph $g$ of order $n$ with vertex set${v_1,v_2,ldots, v_n}$, let $d_i^+$ and $d_i^-$ denote theout-degree and in-degree of a vertex $v_i$ in $g$, respectively. let$d^+(g)=diag(d_1^+,d_2^+,ldots,d_n^+)$ and$d^-(g)=diag(d_1^-,d_2^-,ldots,d_n^-)$. in this paper we introduce$widetilde{sl}(g)=widetilde{d}(g)-s(g)$ to be a new kind of skewlaplacian matrix of $g$, where $widetilde{d}(g...

Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.

Journal: :transactions on combinatorics 2015
r. b. bapat sivaramakrishnan sivasubramanian

let $a = (a_{i,j})_{1 leq i,j leq n}$ be an $n times n$ matrixwhere $n geq 2$. let $dt(a)$, its second immanant be the immanant corresponding to the partition $lambda_2 = 2,1^{n-2}$. let $g$ be a connected graph with blocks $b_1, b_2, ldots b_p$ and with$q$-exponential distance matrix $ed_g$. we given an explicitformula for $dt(ed_g)$ which shows that $dt(ed_g)$ is independent of the manner in ...

Journal: :bulletin of the iranian mathematical society 2011
a. razani e. lindgren

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید