نتایج جستجو برای: Hermite interpolation
تعداد نتایج: 39513 فیلتر نتایج به سال:
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
the gravity recovery and climate experiment (grace), twin satellites launched in march 2002, are making detailed measurements of the earth's gravity field. it will yield discoveries about gravity and the earth's natural systems. different sensors and instruments have been placed in the grace satellites to fulfill the primary scientific objective of the mission in mapping the earth’s g...
We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...
in this paper, we propose to extend the hierarchical bivariatehermite interpolant to the spherical case. let $t$ be an arbitraryspherical triangle of the unit sphere $s$ and let $u$ be a functiondefined over the triangle $t$. for $kin mathbb{n}$, we consider ahermite spherical interpolant problem $h_k$ defined by some datascheme $mathcal{d}_k(u)$ and which admits a unique solution $p_k$in the ...
We examine the use of Hermite interpolation, that is interpolation using derivative data, in place of Lagrange interpolation to develop high-order PDE solvers. The fundamental properties of Hermite interpolation are recalled, with an emphasis on their smoothing effect and robust performance for nonsmooth functions. Examples from the CHIDES library are presented to illustrate the construction an...
The requirements for interpolation of scattered data are high accuracy and high efficiency. In this paper, a piecewise bivariate Hermite interpolant satisfying these requirements is proposed. We firstly construct a triangulation mesh using the given scattered point set. Based on this mesh, the computational point (x, y) is divided into two types: interior point and exterior point. The value of ...
We consider the question of unique solvability in the context of bivariate Hermite interpolation. Starting from arbitrary nodes, we prescribe arbitrary conditions of Hermite type, and find an appropriate interpolation space in which the problem has a unique solution. We show that the coefficient matrix of the associated linear system is a nonsingular submatrix of a generalized Kronecker product...
Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...
Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...
We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید