نتایج جستجو برای: Fischer matrices
تعداد نتایج: 83349 فیلتر نتایج به سال:
the subgroups of symplectic groups which fix a non-zero vector of the underlying symplectic space are called emph{affine subgroups.}~the split extension group $a(4)cong 2^7{:}sp_6(2)$ is the affine subgroup of the symplectic group $sp_8(2)$ of index $255$. in this paper, we use the technique of the fischer-clifford matrices to construct the character table of the inertia group $2^7{:}o^{-}_...
in this paper we give some general results on the non-splitextension group $overline{g}_{n} = 2^{2n}{^{cdot}}sp(2n,2), ngeq2.$ we then focus on the group $overline{g}_{4} =2^{8}{^{cdot}}sp(8,2).$ we construct $overline{g}_{4}$ as apermutation group acting on 512 points. the conjugacy classes aredetermined using the coset analysis technique. then we determine theinertia factor groups and fischer...
the purpose of this paper is the determination of the inertia factors, the computations of the fischer matrices and the ordinary character table of the split extension $overline{g}= 3^{7}{:}sp(6,2)$ by means of clifford-fischer theory. we firstlydetermine the conjugacy classes of $overline{g}$ using the coset analysis method. the determination of the inertia factor groups of ...
the subgroups of symplectic groups which fix a non-zero vector of the underlying symplectic space are called affine subgroups., the split extension group $a(4)cong 2^7{:}sp_6(2)$ is the affine subgroup of the symplectic group $sp_8(2)$ of index $255$. in this paper, we use the technique of the fischer-clifford matrices to construct the character table of the inertia group $2^7{:}o^{-}_{6}(2...
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
in this paper we first construct the non-split extension $overline{g}= 2^{6} {^{cdot}}sp(6,2)$ as a permutation group acting on 128 points. we then determine the conjugacy classes using the coset analysis technique, inertia factor groups and fischer matrices, which are required for the computations of the character table of $overline{g}$ by means of clifford-fischer theory. there are two inerti...
In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...
the split extension group $a(4)cong 2^7{:}sp_6(2)$ is the affine subgroup of the symplectic group $sp_8(2)$ of index $255$. in this paper, we use the technique of the fischer-clifford matrices to construct the character table of the inertia group $2^7{:}(2^5{:}s_{6})$ of $a(4)$ of index $63$.
In our paper [A. B. M. Basheer and J. Moori, On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors, Fischer matrices and the ordinary character table of the split extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer Theory. The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$ is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...
The full automorphism group of $U_6(2)$ is a group of the form $U_6(2){:}S_3$. The group $U_6(2){:}S_3$ has a maximal subgroup $2^9{:}(L_3(4){:}S_3)$ of order 61931520. In the present paper, we determine the Fischer-Clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^9{:}(L_3(4){:}S_3)$.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید