نتایج جستجو برای: ‎Dedekind sums‎

تعداد نتایج: 17272  

2001
MATTHIAS BECK

The literature on Dedekind sums is vast. In this expository paper we show that there is a common thread to many generalizations of Dedekind sums, namely through the study of lattice point enumeration of rational poly-topes. In particular, there are some natural finite Fourier series which we call Fourier-Dedekind sums, and which form the building blocks of the number of partitions of an integer...

2009
SHINJI FUKUHARA

Abstract. Dedekind symbols are generalizations of the classical Dedekind sums (symbols). There is a natural isomorphism between the space of Dedekind symbols with Laurent polynomial reciprocity laws and the space of modular forms. We will define a new elliptic analogue of the Apostol-Dedekind sums. Then we will show that the newly defined sums generate all odd Dedekind symbols with Laurent poly...

‎In this paper‎, ‎we introduce a new sum‎ ‎analogous to Gauss sum‎, ‎then we use the properties of the‎ ‎classical Gauss sums and analytic method to study the hybrid mean‎ ‎value problem involving this new sums and Dedekind sums‎, ‎and‎ ‎give an interesting identity for it.

Journal: :Electr. J. Comb. 1997
Ira M. Gessel

We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...

2014
ILAN VARDI Ilan Vardi Andre Weil Dorian Goldfeld

The subject of this thesis is the theory of nonholomorphic modular forms of non-integral weight, and its applications to arithmetical functions involving Dedekind sums and Kloosterman sums. As was discovered by Andre Weil, automorphic forms of non-integral weight correspond to invariant funtions on Metaplectic groups. We thus give an explicit description of Meptaplectic groups corresponding to ...

2008
Mehmet Cenkci Veli Kurt

The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...

Journal: :Journal of Inequalities and Applications 2021

Abstract Dedekind type DC sums and their generalizations are defined in terms of Euler functions generalization. Recently, Ma et al. (Adv. Differ. Equ. 2021:30 2021) introduced the poly-Dedekind by replacing function appearing sums, they were shown to satisfy a reciprocity relation. In this paper, we consider two kinds new sums. One is unipoly-Dedekind sum associated with 2 unipoly-Euler expres...

Journal: :Symmetry 2021

The main purpose of this paper is to define p-adic and q-Dedekind type sums. Using the Volkenborn integral Teichmüller character representations Bernoulli polynomials, we give reciprocity law these These sums their generalized some classical Dedekind law. It be noted that laws, a fine study existing symmetry relations between finite sums, considered in our study, symmetries through permutations...

2009
Yoshinori Hamahata Jeffrey Meyer

S (in alphabetic order by speaker surname) Speaker: Abdelmejid Bayad (Université d’Evry Val d’Essonne) Title: Some facets of multiple Dedekind-Rademacher sums Abstract: We introduce two kind of multiple Dedekind-Rademacher sums, in terms of Bernoulli and Jacobi modular forms. We prove their reciprocity Laws, we establish the Hecke action on these sums and we obtain new Knopp–Petersson identies....

Journal: :Acta Arithmetica 2003

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید