نتایج جستجو برای: hhg
تعداد نتایج: 293 فیلتر نتایج به سال:
High harmonic generation (HHG) in solids is investigated. We find that interband emission is dominant for the midinfrared laser driver frequencies, whereas intraband emission dominates the far-infrared range. Interband HHG is similar to atomic HHG and therewith opens the possibility to apply atomic attosecond technology to the condensed matter phase. Interband emission is investigated with a qu...
We investigate theoretically high-harmonic generation (HHG) in bulk crystals exposed to intense midinfrared lasers with photon energies smaller than the band gap. The two main mechanisms, interband and intraband HHG, are explored. Our analysis indicates that the interband current neglected so far is the dominant mechanism for HHG. Saddle point analysis in the Keldysh limit yields an intuitive p...
A closed-form analytic formula for high-order harmonic generation (HHG) rates for atoms (that generalizes an HHG formula for negative ions [M. V. Frolov, J. Phys. B 42, 035601 (2009)10.1088/0953-4075/42/3/035601]) is used to study laser wavelength scaling of the HHG yield for harmonic energies in the cutoff region of the HHG plateau. We predict increases of the harmonic power for HHG by Ar, Kr,...
We present an ab initio three-dimensional quantum study of high-order harmonic generation ~HHG! of atomic H in intense pulsed laser fields. Accurate time-dependent wave functions are obtained by means of the time-dependent generalized pseudospectral method recently developed and wavelet transform is used to perform time-frequency analysis of the resulting HHG power spectra. The results reveal s...
We calculate high-harmonic generation (HHG) by intense infrared lasers in atoms and molecules with the inclusion of macroscopic propagation of the harmonics in the gas medium. We show that the observed experimental spectra can be accurately reproduced theoretically despite the sensitivities of the HHG spectra to the experimental conditions. We further demonstrate that the simulated (or experime...
High-order harmonic generation (HHG) from aligned CO 2 is studied within the framework of the strong-field approximation (SFA). Our results are in qualitative agreements with recent pump–probe experiments. The experimentally observed inverted modulation in HHG signals as a function of pump–probe delay time has previously been attributed to the quantum interference from the two oxygen centres. O...
We perform first-principles calculations to study the high-order harmonic generation induced in graphene nanostructures by the laser field. Three distinct signals are noticed: the integer higher-order harmonic generation (HHG), the shifted fractional order peaks from the integer order harmonics, and the intrinsic emissions. Due to the small gap between HOMO and LUMO of graphene molecule, the HH...
This tutorial presents an introduction to power scaling concepts for high-order harmonic generation (HHG) and attosecond pulse production. We present an overview of state-of-the-art HHG-based extreme ultraviolet (XUV) sources, followed by a brief introduction to basic principles underlying HHG and a detailed discussion of macroscopic effects and scaling principles. Particular emphasis is put on...
Closed form expressions for the high harmonic generation (HHG) conversion efficiency are obtained for the plateau and cutoff regions. The presented formulas eliminate most of the computational complexity related to HHG simulations, and enable a detailed scaling analysis of HHG efficiency as a function of drive laser parameters and material properties. Moreover, in the total absence of any fitti...
The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum du...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید