نتایج جستجو برای: bergman space
تعداد نتایج: 496212 فیلتر نتایج به سال:
We study harmonic Bergman functions on the upper half-space of Rn. Among our main results are: The Bergman projection is bounded for the range 1 < p <∞; certain nonorthogonal projections are bounded for the range 1 ≤ p < ∞; the dual space of the Bergman L1-space is the harmonic Bloch space modulo constants; harmonic conjugation is bounded on the Bergman spaces for the range 1 ≤ p <∞; the Bergma...
We give a necessary and a sufficient condition for the boundedness of the Toeplitz product TF TG∗ on the vector valued Bergman space L 2 a(C ), where F and G are matrix symbols with scalar valued Bergman space entries. The results generalize those in the scalar valued Bergman space case [4]. We also characterize boundedness and invertibility of Toeplitz products TF TG∗ in terms of the Berezin t...
where the coefficients are entire functions. In [8], equations of the form (1) with coefficients in weighted Bergman or Hardy spaces are studied. The direct problem is proved, that is, if the coefficients aj(z), j = 0, ..., k − 1 of (1) belong to the weighted Bergman space, then all solutions are of finite order of growth and belong to weighted Bergman space. The inverse problem is also investi...
Throughout this paper by using the frame theory we give a short proof for atomic decomposition for weighted Bergman space. In fact we show that the weighted Bergman space L 2 a (dA α) admit an atomic decomposition i.e every analytic function in this space can be presented as a linear combination of " atoms " defined using the normalized reproducing kernel of this space .
Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...
We show that under mild conditions, a Gaussian analytic function F that a.s. does not belong to a given weighted Bergman space or Bargmann–Fock space has the property that a.s. no non-zero function in that space vanishes where F does. This establishes a conjecture of Shapiro (1979) on Bergman spaces and allows us to resolve a question of Zhu (1993) on Bargmann–Fock spaces. We also give a simila...
We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces Bα of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example. Mathematics Su...
Given a bounded strongly pseudoconvex domain D in C with smooth boundary, we characterize (p, q, α)-Bergman Carleson measures for 0 < p < ∞, 0 < q < ∞, and α > −1. As an application, we show that the Bergman space version of the balayage of a Bergman Carleson measure on D belongs to BMO in the Kobayashi metric.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید