نتایج جستجو برای: $G$-semiperfect ring
تعداد نتایج: 557552 فیلتر نتایج به سال:
for the first time nakayama introduced qf-ring. in 1967 carl. faith and elbert a. walker showed that r is qf-ring if and only if each injective right r-module is projective if and only if each injective left r-modules is projective. in 1987 s.k.jain and s.r.lopez-permouth proved that every ring homomorphic images of r has the property that each cyclic s-module is essentialy embeddable in dire...
Let C be a coalgebra over a QF ring R. A left C-comodule is called strongly rational if its injective hull embeds in the dual of a right Ccomodule. Using this notion a number of characterizations of right semiperfect coalgebras over QF rings are given, e.g., C is right semiperfect if and only if C is strongly rational as left C-comodule. Applying these results we show that a Hopf algebra H over...
A commutative ring A is said to be clean if every element of A can be written as a sum of a unit and an idempotent. This definition dates back to 1977 where it was introduced by W. K. Nicholson [7]. In 2002, V. P. Camillo and D. D. Anderson [1] investigated commutative clean rings and obtained several important results. In [4] Han and Nicholson show that if A is a semiperfect ring, then A[Z2] i...
We define generalized Koszul modules and rings develop a theory for N-graded with the degree zero part noetherian semiperfect. This specializes to classical graded artinian semisimple developed by Beilinson-Ginzburg-Soergel ungraded semiperfect Green Martinéz-Villa. Let A be left finite ring generated in 1 A0 semiperfect, J its Jacobson radical. By dual of we mean Yoneda Ext Ext_A•(A/J,A/J). If...
It is proven that a ring R is δ-semiperfect if and only if every right R-module is (amply) cofinitely δ-supplemented. Mathematics Subject Classification: 16L30, 16E50
We describe decompositions of the group of units of a ring and of its subgroups, induced by idempotents with certain properties. The results apply to several classes of rings, most notably to semiperfect rings.
The object of this paper is to study the relationship between certain projective modules and their endomorphism rings. Specifically, the basic problem is to describe the projective modules whose endomorphism rings are (von Neumann) regular, local semiperfect, or left perfect. Call a projective module regular if every cyclic submodule is a direct summand. Thus a ring is a regular module if it is...
Let $R$ be a ring and $M$ a right $R$-module. We call $M$, coretractable relative to $overline{Z}(M)$ (for short, $overline{Z}(M)$-coretractable) provided that, for every proper submodule $N$ of $M$ containing $overline{Z}(M)$, there is a nonzero homomorphism $f:dfrac{M}{N}rightarrow M$. We investigate some conditions under which the two concepts coretractable and $overline{Z}(M)$-coretractable...
It is well known that every uniquely clean ring is strongly clean. In this paper, we investigate the question of when this result holds element-wise. We first construct an example showing that uniquely clean elements need not be strongly clean. However, in case every corner ring is clean the uniquely clean elements are strongly clean. Further, we classify the set of uniquely clean elements for ...
We previously showed that the inverse limit of standard-graded polynomial rings with perfect (or semiperfect) coefficient field is a ring in an uncountable number variables. In this paper, we show result holds no hypothesis on field. also prove analogous for ultraproducts rings.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید