نتایج جستجو برای: گروه محدب موضعی
تعداد نتایج: 123189 فیلتر نتایج به سال:
برای یک گروه محدب موضعی g ابتدا یک توپولوژی روی جبر اندازه m(g) معرفی می کنیم و سپس دوگان دوم آن را مجهز به نوعی از ضرب آرنز کرده و خواص آن را به عنوان یک جبر باناخ مورد مطالعه قرار می دهیم. علاوه بر این به بررسی مساله یکریختی های طولپا روی آن می پردازیم.
فرض کنید g یک گروه توپولوژیک باشد. ما در این پایان نامه دو هدف اصلی داریم. در ابتدا نشان می دهیم که رده های گروه های فشرده موضعی ضعیف و شبه فشرده موضعی یکسان هستند. سپس نتیجه اساسی زیر را که نشات گرفته از سوال مطرح شده توسط k. a. ross است، اثبات می کنیم. فرض کنید و توپولوژی های یک گروه فشرده موضعی و آبلی مانند باشند. اگر و دارای زیرگروه های بسته یکسان باشند و ، آنگاه .
در این پایان نامه توابع تقریبا" محدب را روی گروههای توپولوژیک مطالعه خواهیم کرد. همچنین قضایای ینسن، برنشتاین - دوچ، استروفسکی ، بلومبرگ - سیرپنسکی و مهدی را روی توابع تقریبا" محدب مبانی در فضاهای برداری توپولوژیک به توابع تقریبا" محدب مبانی در گروههای توپولوژیک تعمیم خواهیم داد. در نهایت ، توابع تقریبا" -wright محدب را در گروههای توپولوژیک تعریف کرده و قضیه ای را در مورد آن اثبات می کنیم.
برای گروه فشردهg دوگان جبرهای باناخ متشکل از توابع کراندار اساسی که در بینهایت صفر می شوند را مورد مطالعه قرار می دهیم.ضربگرهای فشرده روی این دوگانهارابررسی کرده وثابت می کنیم وجودیک ضربگر چپ فشرده روی این دوگان هابا فشردگی گروه g معادل است.همجنین رده ی عناصر به طورکامل پیوسته چپ این دوگان ها راتوصیف می کنیم. دوگان جبرهای نیم گروهی را برای ردهی وسیعی از نیم گروه های فشرده موضعی s تحت توپولوژی ...
در این پایان نامه نشان می دهیم که توپولوژی های استریسک که توسط کاپلان و باناخ زیک در نظریه دوگان مورد استفاده قرار گرفتنددر کاتگوری گروه های ابلی توپولوژیک با هم برابر نیستند اما در کاتگوری گروه های شبه محدب موضعی انها برابر و با توپولوژی هم ضرب نیز یکی هستند.
در این رساله, ابتدا گروه های موضعی توپولوژیک را تعریف نموده و خواصی از آن را شناسایی و قضیه های مرتبط با آن را ثابت می کنیم. سپس با استفاده از توپولوژی انتقال , یک زیرگروه موضعی توپولوژیک از یک گروه را به کل آن گروه گسترش داده و آن را تبدیل به یک گروه توپولوژیک می کنیم. در حالت کلی , ثابت می کنیم که یک گروه موضعی توپولوژیک با خاصیت شرکت پذیری کلی قابل گسترش به یک گروه توپولوژیک است. در ادامه...
فرض کنید g یک گروه هاسدورف و فشرده موضعی و? یک زیر گروه بسته از g×g باشد در این پایان نامه مفهوم جابه جایی نسبت به یک زیر گروه بسته که یک نتیجه کلی از ضرب گرهاست معرفی می شود و عملگرها روی l^2 (g) که با انتقال جابه جا می شوند را مشخص می سازیم هرگاه g میانگین پذیر شود. نشان می دهیم که اگر t عملگر خطی ضعیف ستاره-ضعیف ستاره پیوسته روی l^? (g) باشد در این صورت t با عملگرهای مزدوج جابه جا می شود اگر...
در این پایان نامه، پس از بیان نکات و قضایایی از نظریه ی وزن ها، ساختار کوانتــوم گروه فشرده ی موضعی را که یک c*- جبر است، تعریف می نماییم. برای جبر باناخ a، همریختـی های a- مدولی روی زیر فضاهای خودبرگـردان a* را بررسی نموده و نشـان می دهیم همه ی همریختی های a- مدولی a* نرمال اند اگر و تنها اگر a ایده آلـی از a** باشد. هم چنیـن نشان می دهیم بـرای کوانتوم گروه فشرده ی موضعی g که هم میانگین پذیر ...
این پایان نامه به معرفی گروه های کوانتمی فشرده موضعی در چارچوب نظریه جبر عملگرها، یعنی جبرها و جبرهای فون نویمان، خواهد پرداخت. این نظریه برگرفته شده از کار کاسترمن و واعظ [15] و [16] می باشد. از نظر تاریخی اولین ایده در ایجاد اصول کوانتیزه کردن گروه های فشرده موضعی، تعمیم قضیه دوگانی پنتریاگین برای گروه های فشرده موضعی ناآبلی بوده است. از آنجا که دوگان یک گروه ناآبلی گروه نیست، بنابراین باید ...
هدف از این پایان نامه تعمیم نتیجه مشهور جانک به فضای محدب موضعی و اثبات قضایای نقطه ثابت مشترک برای نگاشتهای (t,i)-نامبسوط زیرسازگار در فضای محدب موضعی است. این قضایا را برای بدست آوردن نتایج وجود نقطه ثابت مشترک برای مجموعه بهترین تقریب نیز بکار خواهیم برد. همچنین نتایج نقطه ثابت مشترک و تقریب برای کلاس جدیدی از زوج عملگر باناخ اثبات خواهد شد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید