نتایج جستجو برای: گراف r

تعداد نتایج: 448795  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1392

فرض کنیم r حلقه ی جابجایی با عنصر همانی و ()r? گرافی باشد که اعضای حلقه ی r به عنوان مجموعه رئوس گراف هستند و دو راس متمایز a و b مجاورند اگروتنهااگر ra+rb=r . در این پایان نامه یک زیرگراف 2()r? را در نظر می گیریم که شامل عناصر غیریکه است. همبندی و قطر این گراف را مطالعه ?(r) از گراف کرده و به طور کامل قطر گراف 2()()rjr? را دسته بندی می کنیم. به علاوه نشان می دهیم که برای دو حلقه ی نیم...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده ریاضی 1391

مقدمه بک اولین کسی بود که در سال 1988 مفهوم گراف مقسوم‎علیه صفر یک حلقه‏ی r را تحت عنوان رنگ‏آمیزی رئوس بیان کرد. او اعضای حلقه‎ی r را به عنوان مجموعه رئوس یک گراف در نظر گرفت. همچنین دو عضو متمایز x,y?r با هم مجاورند اگر و تنها اگر xy=0. بک عدد رنگی (کمترین تعداد رنگی که می‎توان با آن اعضای حلقه‎ی r را رنگ‎آمیزی کرد، در حالتی که دو رأس مجاور دارای رنگ‎های متفاوتی باشند.) و خوشه (کوچکترین ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1389

برای حلقه های ناجابجایی، گراف مقسوم علیه صفر حلقه ی r که با نماد(?(r نشان داده می شود، گرافی است که رأس های آن همه ی مقسوم علیه های صفر ناصفر از r هستند که برای هردو رأس مجزای x و y, داریم x?y یک یال است اگروفقط اگر xy=0. هدف از مطالعه گراف مقسوم علیه صفر بررسی بین ویژگی های جبری حلقه ی r و ترکیبیاتی گراف (?(rاست. در این پایان نامه بررسی می کنیم که گراف مقسوم علیه صفر کدام حلقه هایک گراف دوبخشی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم پایه 1391

فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان 1389

چکیده فرض کنید r یک حلقه و g یک گراف باشد که مجموعه رئوس آن عناصر حلقه r هستند و دو رأس x,y در g مجاورند هر گاه x+y ?z(r). در این صورت گراف g را گراف کلی می نامیم. در این پایان نامه گراف کلی را روی حلقه جابجایی و یکدار r و برخی زیر مجموعه های آن از جمله z(r) و reg (r) مورد بررسی قرار می دهیم. اساساً بررسی گراف کلی به دو دسته تقسیم شده است که این تقسیم بندی به ایده آل بودن و یا نبودن z(r) بستگی ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی 1393

فرض کنید ‎$ r $‎ حلقه ای جابه ‎جایی و یکدار و ‎$ z(r) $‎ مجموعه مقسوم علیه های صفر حلقه ‎$ r $‎ باشد. گراف جمعی حلقه ‎$ r $‎ گرافی است که رئوس آن عناصر حلقه می باشد و دو راس متمایز ‎$ x $‎ و ‎$ y $‎ مجاورند اگر و تنها اگر ‎$ x+y in z(r) $‎ . این گراف با نماد ‎$ t(gamma(r)) $‎ نمایش داده می شود. در این پایان نامه دو زیر گراف ‎$ t_0(gamma(r)) $‎ و ‎$ z_0(gamma(r)) $‎ که رئوس آن به ترتیب ‎$ r ^* $...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده ریاضی 1391

برای حلقه ی یکدار r گراف ایدآل های دو به دو متباین حلقه ی r ، که با(? (r نمایش داده می شود، گرافی ساده با مجموعه رئوس عناصر r است که در آن دو راس متمایز a و b مجاورهستند اگر و تنها اگرr = ar +br. هدف از مطالعه ی گراف ایدآل های دو به دو متباین در حلقه های جابجایی ایجاد ارتباط بین نظریه ی گراف و نظر یه ی حلقه های جابجایی می باشد. در این پایان نامه ابتدا زیر گراف که رئوس آن عناصر غیر یکه r است...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387

گراف مقسوم علیه صفر حلقه ی r که با t(r نمایش داده می شود، گرافی است با مجموعه رئوس که دو رأس a و b در ان مجاورند اگر ab=0. در این پایان نامه، ابتدا با بررسی مسطح بودن یا نبودن گراف مقسوم علیه صفر حلقه ها تعویض پذیر و یک دار، تمام حلقه هایی که برای آن ها t(r مسطح است،؛ مشخص خواهد شد. سپس گرافی را معرفی خواهیم کرد که معتقدیم بهتر گراف مقسوم علیه صفر، خواص حلقه را تعیین می کند. در این گراف که آْن گ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی 1392

در این پایان نامه، گراف اشتراک (g(r را که رئوس آن ایده آلهای چپ حلقه r است، بررسی می کنیم و در ادامه حلقه های r را مشخص می کنیم که، گراف (g(r همبند باشد، همچنین چند شرط لازم و کافی روی حلقه r برای کامل بودن بدست می آوریم. برای حلقه جابجایی و یکدار r نشان می دهیم که، (g(r کامل است اگر و تنها اگر ([g(r[x کامل باشد. در حالت خاص مشخص می کنیم برای چه مقادیری از n، گراف (g(z_n همبند، کامل، دو بخشی یا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1392

فرض کنیم r یک حلقه ی جابجایی باشد. گراف کلی r رابا نمایش می دهیم که رئوس این گراف تمامی اعضای حلقه ی r هستند و دو راس مجزای x وy مجاورند اگر و تنها اگرr ? y+x، که (r) z همان مجموعه ی مقسوم علیه های صفر r است. گراف عادی r، ((r)? reg(، یک زیر گراف القایی از((r )?)t روی اعضای عادی r است. فرض کنیم r یک حلقه ی جا بجایی نوتری باشدو (r) z ایده آل نباشد0 در این پایان نامه نشان می دهیم که اگر((r )?)tیک ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید