نتایج جستجو برای: گراف های کمان انتقالی

تعداد نتایج: 479563  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه 1392

فرض کنیم s عددی صحیح و مثبت باشد. یک گراف را s-انتقالی گوییم هرگاه گروه خودریختی های آن روی s-کمان ها انتقالی باشد اما روی s+1-کمان ها انتقالی نباشد. همچنین گراف را نیم کمان انتقالی گوییم هرگاه یال انتقالی و راس انتقالی باشد اما کمان انتقالی نباشد. در این پایان نامه طبقه بندی کاملی از گراف های s-انتقالی از ظرفیت چهار و از مرتبه ی 4p ارائه شده است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان 1390

فرض کنید x)e,((x)v)= x ))یک گراف باشد و x)?????? ? ??). اگر?? روی مجموعه های x)e، (x)v )و x)a )به طور انتقالی عمل کند، آنگاه ?? را به ترتیب یک گراف ??- راس- انتقالی، ??- یال- انتقالی و ??-کمان- انتقالی می نامیم. در حالت خاص x)?????? = ??)، گراف x را به ترتیب راس- انتقالی، یال- انتقالی و کمان- انتقالی (متقارن) می نامیم. گراف 3- منتظم x را که یال-انتقالی باشد اما راس- انتقالی نباشد، یک گراف مکعبی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1392

فرض کنیم x یک گراف باشد. گراف x را رأس انتقالی ویال انتقالی یا کمان انتقالی (متقارن)گوییم هرگاه گروه خودریختی های گراف x یعنی (aut(x روی مجموعه رئوس و یال هاوکمان هاانتقالی باشد. فرض کنیم x یک گراف رأس انتقالی و(aut(x دارای دو مدار با طول برابر بر روی مجموعه کمان های گراف x باشد. در این صورت گراف x را نیم کمان انتقالی یا نیم یال انتقالی گوییم هرگاه (aut(x به ترتیب یک یا دو مدار روی مجموعه یال ه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - پژوهشکده علوم 1392

2 مشتمل بر سه pq این پایان نامه تحت عنوان گرافهای 1 - منظم از ظرفیت چهار و از مرتبه که ما را در ?? و همچنین مثالهای ?? باشد: درفصل اول به بیان تعاریف و قضایای مقدمات ?? فصل م جلوترنهاده و گرافهای 1- منظم ?? پردازیم. در فصل دوم گام ?? کنند، م ?? اثبات قضایا و لمها یاری م کنیم. همچنین در فصل سوم گرافهای 1 - منظم ?? 2 را طبقهبندی م pq از ظرفیت چهار و از مرتبه کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1392

فرض کنیم g یک گروه باشدوs باوارونش برابر باشدوهمانی داخل s نباشد.دراین صورت گراف کیلی cay(g,s( راگرافی تعریف می کنیم که مجموعه ی روس آن عناصرg باشد ودو راس g,h متعلقند به g مجاورند اگر وتنها اگرgدروارون h متعلق باشند به s.می دانیم گروه خودریختی های هر گراف گاماروی مجموعه ی روس ومجموعه ی یال ها و مجموعه ی s-کمان های یک گراف عمل کند وهر گاه این گروه روی هریک ازمجموعه فوق انتقالی عمل کند آن گاه گر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گلستان - دانشکده علوم پایه 1393

فرض کنید $ h=(v_h,e_h) $ یک ابرگراف باشد. ابرگراف $ h $، $ s $-کمان-انتقالی نام دارد هرگاه $ aut(h) $ روی مجموعه $ s $-کمان های آن انتقالی باشد. سراltrfootnote{serra} و همکارش در سال $ 2008 $ مطالعه روی ابرگراف های $ s $-کمان-انتقالی را آغاز کردند cite{sonia}. آنها نتایجی مشابه گراف های $ s $-کمان-انتقالی را برای این نوع ابرگراف ها اثبات کردند. گراف های کیلی، گراف هایی ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم 1390

1.0 چکیده های گراف ?? ریختی ?? ها موجودند که بستگی نزدیکی به چگونگی عمل گروه خود ?? هایی در گراف ?? ویژگی های این گراف دارند. مثلاً در گراف همبند ?? -کمان k ها یا ?? بر مجموعه رئوس یا یال ?? داده شده به طور انتقالی عمل کند، ?? بر مجموعه رئوس ?? های ?? ریختی ?? ، یعنی گروه خود aut(??) اگر ?? aut(??) 2 درجه هر راس) و اگر / از میزان بالایی برخوردار است (بیشتر از 3 ?? -همبندی k آنگاه دارای بیشت...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه 1390

مفاهیم کمان و همبندی نقش مهمی هم از نظر تئوری و هم از نظر کاربردی در گراف های فازی دارند. بسته به قدرت یک کمان، کمان ها در گراف فازی به سه نوع ?- قوی، ?- قوی و ?- کمان تقسیم می شوند. فایده این نوع تقسیم بندی این است که به درک کامل ساختار پایه یک گراف فازی کمک می کند. رابطه بین مسیــرهای قوی و قوی ترین مسیــرها در یک گراف فازی مورد تجزیه و تحلیـل قرار گرفته و همچنین ویژگی های پل های فازی، درخت ه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه 1392

چ 1. در اینصورت g ?2 s باشد به طوری که g زیر مجموعه از ?? ی s و ?? گروه متناه ?? ی g فرضکنیم v (x) = g است با مجموعه رئوس ?? گراف s نسبت به g از گروه x = cay(g; s) ?? گراف کیل نامیم ?? را رأس (یال)-انتقال x = cay(g; s) .گراف e(x) = f(a; b)jba??1 2 sg ?? و مجموعه یال عمل ?? ، روی مجموعه رئوس(یالها) به صورت انتقال x های گراف ?? گروه خودریخت ،aut(x) هرگاه روی کمانها به صورت aut(x) شود هرگاه ?...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - پژوهشکده ریاضیات 1392

در این پایان نامه ابتدا به بررسی گراف های پوششی و ولتاژ گراف ها می پردازیم‎.‎ سپس گراف های رأس-انتقالی غیرکیلی مکعبی از مرتبه4p^2 را مورد بررسی قرار داده و ثابت می کنیم هر گراف رأس-انتقالی غیرکیلی از مرتبه 4p^2 (7 < p‎) ‎‎ یک گراف پترسن تعمیم یافته غیرمتقارن است. ‎‎ ‎‎‎همچنین نشان می دهیم که سیلو p-زیرگروه‎ گروه خودریختی گراف رأس-انتقالی مکعبی از مرتبه ‏‎2p^n‎ ‎( n‎ ‎‎? ‎p‎) ‎ یک زیرگروه نرمال...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید