نتایج جستجو برای: گراف های پترسن
تعداد نتایج: 478377 فیلتر نتایج به سال:
فرض کنید n و k دو عدد صحیح باشند به طوری که n>k>0. در این پایان نامه به معرفی یک رده جدید از گراف ها، با عنوان h(n,k) که شامل ابرمکعب ها و برخی از گراف های معروف است، می پردازیم. برای نمونه گراف های جانسون، گراف های نسر و گراف های پترسن، زیرگراف های h(n,k) هستند. برخی خواص جبری و توپولوژیکی گراف های h(n,k) را ارائه می کنیم. برای مثال، h(n,k) یک گراف کیلی است، خودریختی گروهی h(n,k)شامل یک زیرگر...
مطالعه گشتاورهای طیفی یک گراف یکی از مباحث اصلی و کلاسیک در نظریه جبری گراف است. شروع مطالعات در زمینه گشتاور طیفی یک گراف، به مسائلی از سوتکویچ و رولینسون در سال 1987 باز می گردد و کاربرد متنوعی از این مطالعات را می توان در مقالاتی که اخیراً به چاپ رسیده است ملاحظه کرد. یکی از اهداف این پایان نامه ارایه ماکسیمم و ماکسیمم دوم گراف ها از مجموعه همه گراف های شبه درخت از مرتبه n براساس گشتاورهای ...
چندجمله ای وابسته گراف g، نقش مهمی در مطالعه ساختار یک گراف دارد. چندجمله ای تات توسط ریاضی دانی به همین نام معرفی شد، که دارای خواص مشابه چندجمله ای وابسته است.در این پایانامه به مطالعه خواص اصلی چندجمله ای تات گراف های n پره و n چرخ می پردازیم. هدف دیگر این این پایانامه محاسبه چندجمله ای رنگی و وابسته برخی از اعمال گرافهاست. هم چنین خواص چندجمله ای وابسته گراف های جانسون، نسر و پترسن تعمیم یا...
در این پایان نامه ابتدا به بررسی گراف های پوششی و ولتاژ گراف ها می پردازیم. سپس گراف های رأس-انتقالی غیرکیلی مکعبی از مرتبه4p^2 را مورد بررسی قرار داده و ثابت می کنیم هر گراف رأس-انتقالی غیرکیلی از مرتبه 4p^2 (7 < p) یک گراف پترسن تعمیم یافته غیرمتقارن است. همچنین نشان می دهیم که سیلو p-زیرگروه گروه خودریختی گراف رأس-انتقالی مکعبی از مرتبه 2p^n ( n ? p) یک زیرگروه نرمال...
در این پژوهش تابع غالب رومی علامت دار را روی برخی گراف ها مطالعه می کنیم. تابع f:v(g)?{-1 ,1 ,2} را غالب رومی علامت دار (srdf) می نامیم هرگاه برای هر رأس v با شرط f(v)= -1 ، حداقل یک رأس مجاور با v مانند u موجود باشد که f(u)=2 و هم چنین برای هر x?v(g) داشته باشیم: f[x]=?_(y?n[x])??f(y)?1? وزن هر srdf مانند f به صورت (f)=?_(v?v)f(v)? است. عدد غالب رومی علامت دار گراف g برابر srdf های روی گراف...
در این رساله رنگ آمیزی رنگین کمانی گرافها را مورد مطالعه قرار می دهیم. یک رنگ آمیزی رنگین کمانی از گراف g عبارت از تخصیص رنگ ها به راس های گراف g است به طوری که در همسایگی بسته ی هر راس g رنگها متمایز از هم باشند. به طور معادل یک رنگ آمیزی رنگین کمانی از گراف g یک رنگ آمیزی مجذور گراف g است و برعکس . با این رهیافت رنگ آمیزی رنگین کمانی تورها واستوانه ها و چنبره ها را مورد بررسی قرار می دهیم...
احاطه گری رومی اولین بار توسط استوارت و ریول و رزینگ در سال های 1999و2000 معرفی شد و مورد توجه ریاضی دانان زیادی قرار گرفت . عدد احاطه گری رومی کاربرد زیادی در علوم کامپیوتر دارد. در این پایان نامه در فصل اول پس از بیان تعاریف مقدماتی به تعریف احاطه گری رومی و برخی خواص ان پرداخته و سپس عدد احاطه گری رومی را با عدد احاطه گری مقایسه کرده ایم . در فصل دوم به ارائه ماکسیمم و مینیمم برای |v0| و|v1|...
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...
فرض کنید g یک گراف و ?:v(g)?? یک تخصیص آستانه ها به راس های گراف باشد، منظورازانتخاب مجموعه ی هدف برای گراف gعبارت از یافتن زیرمجموعه ای از راس های g است که بتواند به صورت پویا تمام راس های گراف را فعال سازد. کمترین تعداد راس های یک مجموعه ی هدف را با min-seed(g,?) نمایش می دهیم. در حقیقت، مساله ی انتخاب مجموعه ی هدف همان مونوپلی پویاست. در حالت کلی، این مساله نه تنها یک مساله ی np-سخت است، بلک...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید