نتایج جستجو برای: گراف غیرجا به جایی
تعداد نتایج: 688114 فیلتر نتایج به سال:
فرض کنید g گروهی نا آبلی و z(g) مرکز آن باشد . در این صورت گراف g? که گراف غیر جا به جاییg نامیده می شود را به صورت زیر به گروهg نسبت می دهیم : رأس های g? راg(g) در نظر می گیریم و دو رأس متمایزx وy به یکدیگر متصل می شوند هرگاه داشته باشیم xy?yx . دراین پایان نامه به بررسی ویژگی های این نوع گراف ها و ارتباط خواص بین گروه ها و گراف های غیرجا به جایی متناظر با آن ها می پردازیم . به ویژه این حدس ر...
فرض کنیم $g$ یک گروه متناهی و $xsubseteq g$ باشد. گراف جابه جایی $c(g,x)$ عبارت است از گرافی با مجموعه رئوس $x$ به طوری که برای هر $x,yin x$، $xy$ یال است اگر و تنها اگر $xy = yx$. این گراف به طرق گوناگون بررسی شده است. در این جا دو حالت $c(g,g)$ و $c(g,g setminus z(g))$ را در نظر می گیریم. هدف ما بررسی ساختار، ویژگی های متریک و خواص گروه خودریختی های این گراف هاست. عل...
فرض کنیم g یک گروه ناآبلی متناهی باشد.گراف (?(g را که گراف ناجابه جایی g نامیده می شود، با مجموعه ی رئوس (g- z(g تعریف می کنیم؛ به طوری که دو راس x و y در آن مجاورند اگرو تنها اگر xy ?yx. دراین پایان نامه در فصل اول به بیان مقدماتی از نظریه گروه ها و نظریه گراف می پردازیم.فصل دوم به انواع تزویجی گروه ها و زیرگروه های اساسی اختصاص دارد. درفصل سوم نیز در مورد تعداد یال های و عدد رنگی نتایجی به ...
پس از اینکه حاگی گروه های متناهی دارای گراف اول یکسان با گروه های ساده پراکنده را در سال ???? معین کرد، امیر خسروی و بهروز خسروی مفهوم تشخیص پذیری گروه های متناهی به وسیله گراف اول را در سال ???? معرفی کردند. گرچه این تشخیص پذیری برای تعداد زیادی از گروه های ساده متناهی با گراف اول ناهمبند ثابت شده است، اما a_?? (?) تنها گروه با گراف اول همبند می باشد که مسأله تشخیص پذیری آن به وسیله گراف اول ت...
فرض کنیم g گروه ناآبلی و (z(g مرکز آن باشد.در این صورت گراف ناجا به جایی (g)? گراف ساده است که مجموعه رئوس آن (g-z(gاست و دو رأس x,yبه هم وصلند اگر و تنها اگر xy?yx باشد.در این پایان نامه تشخیص پذیری گروه anبرای n?4و گروه سیمپلکتیک (s4(q نشان داده شده است.
گراف جیکوبسن معرفی شده و بیان شده که تحت چه شرایطی دو راس متمایز با هم مجاور هستند. برخی از خصوصیات گراف نیز محاسبه شده است.
یکی از مسائل موجود در نظریه گروه ها مطالعه و بررسی گراف های ناجابه جایی و جابه جایی گروهه ای متناهی می باشد. فرض کنیم g یک گروه متناهی باشد. گراف ناجابه جایی یک گروه متناهی g، گرافی است که مجموعه رأس های برابر g-z(g) می باشد به طوری که z(g) مرکزگروه g است و دو رأس x و y در آن مجاورند اگروتنهااگر xy با yx برابر نباشد. یکی از مسائل مورد بررسی در گراف های ناجابه جایی پیدا کردن عدد خوشه ای این گرا...
فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...
فرض کنیم g یک گروه و (z(g مرکز گروه باشد. دراین صورت گراف جابه جایی وابسته به گروه g که با ?_g نمایش داده می شود بدین صورت تعریف می کنیم که رئوس آن عناصر غیر مرکزی یعنی (g(g می باشند و دو رأس x و y به یکدیگر وصل می باشند هرگاه xy=yx. در این پایان نامه همبندی، قطر، کمر و عدد استقلال گراف جابه جایی هنگامی که مرکز گروه بدیهی باشد، بررسی می شود. در انتها گراف جدید ?^g-غیر جابه جایی را معرفی و سپس ب...
در این پایان نامه علاوه بر این که مفاهیم احتمالی تازه ای را معرفی می کنیم ، نظریه ی احتمالی گروه ها را به نظریه ی گراف ها پیوند می دهیم. گرافی را به گروهی نسبت داده و اطلاعات عمومی این گراف را بررسی می کنیم. گاهی اوقات ایده ی مربوط کردن گرافی خاص به گروهی معین از احتمالاتی که قبلاً معرفی شده ، ناشی شده است. در برخی موارد ساختن یک گراف کلیدی برای تعریف مفهومی احتمالی بوده است. از اهداف این رسال...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید