نتایج جستجو برای: گراف زیرگروه ها
تعداد نتایج: 342227 فیلتر نتایج به سال:
فرض کنید $g$ یک گروه متناهی غیریکریخت با یک $p$-گروه دوری ($p$ عدد اول) باشد. گراف الحاق زیرگروه های $g$ را با $delta(g)$ نشان می دهیم. مجموعه ی رئوس این گراف، متشکل از زیرگروه های سره ی $g$ است که در زیرگروه فراتینی قرار ندارند و دو رأس $h$ و $k$ با هم مجاور هستند هرگاه $g=langle h, k angle$. نشان می دهیم که این گراف همبند و قطر آن حداکثر ? است. عدد رنگی و عدد خوشه ای این گراف با هم ...
فرض کنید g گروهی متناهی باشد. در این پایان نامه دو نوع گراف اشتراکی وابسته به گروه g را مورد مطالعه قرار داده ایم. اولین گراف، گراف اشتراکی زیرگروه های g است که در آن راس ها عناصر غیرهمانی g و دو راس x و y با یکدیگر مجاورند هرگاه زیرگروه های دوری و اشتراک غیربدیهی داشته باشند. خواص اساسی این گراف از جمله همبندی، عدد استقلال، مسطح بودن و غیره را بررسی می کنیم. دومین گراف، گراف ا...
هدف از این پایان نامه معرفی دو گراف وابسته به یک زیرگروه از یک گروه می باشد. در این راستا ابتدا گراف کیلی گروه g وابسته به زیرگروه h را که بنام گراف همرده کیلی معروف است را مورد مطالعه قرار می دهیم که در آن رئوس گراف عبارتند از مجموعه ی تمام همرده های متمایز راست h در g است و رأس hx به رأس hy متصل است, اگر yx^{-1} in hsh که در آن s یک زیرمجموعه از g است. گراف دیگر...
فرض کنید g یک گروه متناهی وcs(g) مجموعه ی همه ی اندازه های رده های مزدوجی g{1} باشد. فرض کنید (g)? نشان دهنده گراف اول ساخته شده بر روی cs(g) باشد، در این صورت رئوس (g)? اعداد اول شمارنده ها ی اعضای cs(g) هستند و دو رأس متمایز p و q در (g)? مجاور هستند اگر و تنها اگر pq عضوی از cs(g) را عاد کند. مجموعه ی رئوس و مجموعه ی یال های (g)? را به ترتیب باv(g) وe(g) نشان م...
در این پایان نامه علاوه بر این که مفاهیم احتمالی تازه ای را معرفی می کنیم ، نظریه ی احتمالی گروه ها را به نظریه ی گراف ها پیوند می دهیم. گرافی را به گروهی نسبت داده و اطلاعات عمومی این گراف را بررسی می کنیم. گاهی اوقات ایده ی مربوط کردن گرافی خاص به گروهی معین از احتمالاتی که قبلاً معرفی شده ، ناشی شده است. در برخی موارد ساختن یک گراف کلیدی برای تعریف مفهومی احتمالی بوده است. از اهداف این رسال...
در این پایان نامه، نشان می دهیم که در کد خود دوآل زوجی مضاعف از طول n رویgf(2) ، nقابل تقسیم بر 8 و d?4[n/24]+4 است. کد زوجی سه گانه خطی دوتایی کدی است که وزن تمام کلماتش قابل تقسیم بر 8 است. ما نشان می دهیم که چگونه از ترکیب دو کد زوجی مضاعف از طول های n وm ، کد زوجی سه گانه از طول m+n بسازیم، همچنین روش های دیگری برای ساخت کد زوجی سه گانه از کد زوجی مضاعف ارائه می دهیم.
بررسی ساختار زیرگروه های گروه های آزاد از مسائل کلاسیک در نظریه گروه ها می باشد. روند اصلی که در برخورد با این مسائل وجود داشته و توسط نلسون به کار گرفته می شده، روشی کاملاً ترکیبیاتی بوده است. تاکنون ریاضیدانان بسیاری از این روش برای کار روی زیرگروه های گروه های آزاد استفاده کرده اند. با پیشرفت توپولوژی جبری و نظریه پوشش روند متفاوتی برای این منظور ارائه می شود. این دیدگاه توپولوژیکی با جزئیات ...
چکیده فرض کنیم g یک گروه باشد مرکز ساز عنصر x?g را به صورت زیر تعریف می کنیم؛ c_g (x)={y?g? است آبلی?x,y? } اگر در این تعریف، کلمه آبلی را با کلمه دوری جایگزین کنیم. یک زیر مجموعه از مرکزساز به دست می آید که به این زیرمجموعه، دوری ساز x در g می گوییم و آن را با cyc_g (x) نشان می دهیم پس؛ cyc_g (x)={y?g? ?x,y?است دوری} همچنین، cyc(g) را به صورت زیرتعریف می کنیم؛ cyc(g)={x?g??x,y?است دور...
در این پایان نامه ابتدا به بررسی گراف های پوششی و ولتاژ گراف ها می پردازیم. سپس گراف های رأس-انتقالی غیرکیلی مکعبی از مرتبه4p^2 را مورد بررسی قرار داده و ثابت می کنیم هر گراف رأس-انتقالی غیرکیلی از مرتبه 4p^2 (7 < p) یک گراف پترسن تعمیم یافته غیرمتقارن است. همچنین نشان می دهیم که سیلو p-زیرگروه گروه خودریختی گراف رأس-انتقالی مکعبی از مرتبه 2p^n ( n ? p) یک زیرگروه نرمال...
در این پایان نامه قصد داریم ضمن بررسی گراف ناجابجایی، تعمیمی از آن به صورت زیر ارایه دهیم. فرض کنید n عدد صحیح مثبت و h زیرگروه غیرآبلی g باشد. ?nh,g را به این صورت به h نسبت می دهیم، که مجموعه رئوس این گراف از g cnh,gانتخاب شوند که cnh,g={x? g:[x,yn]=1 , [xn,y]=1 forall y? h}. همچنین رئوس {x,y} یک یال هستند، هرگاه x و y به h تعلق داشته باشند و xyn?ynx یا xny?yxn....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید