نتایج جستجو برای: کد احاطه گر مکانی
تعداد نتایج: 28628 فیلتر نتایج به سال:
چکیده فرض کنیدg=(v,e) گرافی همبند و بدون جهت باشد و r?1 عددی صحیح باشد. زیرمجموعه ای از رئوس مانند c?v را در نظر بگیرید. به ازای هر راس v?v مجموعه b_r (v) را به صورت b_r (v)={x?v: d(x,v)?r} تعریف می کنیم. اگر به ازای هر راسv?v، همه مجموعه های b_r (v)?c ناتهی و دو به دو متمایز باشند، آن گاه c را کدr-شناسایی می نامیم. اگر به ازای هر راسv?vc ، همه مجموعه های b_r (v)?c ناتهی و دو به دو متمایز باشن...
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...
مجوعه ی احاطه گر دوبدودر گراف ها اولین بار توسط هینس و اسلتر در سال 1998 به عنوان الگویی برای گرفتن پشتیبان وحفاظت از اهداف محرمانه ارائه شد. جان مک کوی ومیچل هنینگ درسال2009 دو مفهوم مکان یابی و مجموعه ی احاطه گر دوبدو را ترکیب کردند و سه تعریف جدید مجموعه های احاطه گر دوبدو مکان یابی ومجموعه های احاطه گر دوبدو مشتق پذیر و مجموعه های احاطه گر دوبدو متریک را ارائه کردند. در این پایان نامه، فصل...
در این پایان نامه احاطه گرهای سراسری و مستقل را معرفی کرده و سپس با استفاده از تحقیق در عملیات ، مساله برنامه ریزی خطی آن را بیان کرده ایم سپس چندجمله ای مربوط به هر یک را بدست آورده ایم و در نهایت ضرایب جندجمله ای را برای هر یک از آنها بدست آورده ایم.
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
چندجمله ای احاطه گر گراف g از مرتبه n به صورت d(g,x)=?_(i=?(g))^n??d(g,i)? تعریف می شود که d(g,i) تعداد مجموعه های احاطه گر گراف g از اندازه i بوده و ?(g) عدد احاطه ای g است. ریشه d(g,x) را ریشه احاطه ای نامیده و با z(d(g,x)) نشان می دهند. در این پایان نامه خواص اساسی چند جمله ای بعضی گراف ها را مطالعه و چند جمله ای احاطه گر دورها و مسیرها را تعیین می کنیم.
گراف ها اغلب به صورت مدل هایی از شبکه های ارتباطی مورد استفاده قرار می گیرند. فرض کنید یک ایستگاه رادیویی می خواهد امواج با ظرفیت های محدود را به شهرهایی مختلف منتشر کند. مدل این وضعیت را با یک گراف نمایش می دهند به طوری که رأس ها ایستگاه های مخابره کننده هستند و مجاورت دو رأس نشان می دهد که این رأس ها هر کدام در دامنه دیگری قرار دارند. هنگامی که مخابره کننده ها فرکانس مشابه منتشر می کنند تداخل...
فرض کنید g یک گراف با مجموعه رِِِأسهای v و مجموعه یالهای e باشد. زیرمجموعه s از رأسهای g را مجموعه احاطه گر می گویند هر گاه هر رأس vs با حداقل یک رأس از s مجاور باشد.زیرمجموعه s را احاطه گر تام می گویند اگر هر رأس از v با حداقل یک رأس از s مجاور باشد. اگر در تعاریف این مجموعه ها بجای کلمه حداقل از کلمه دقیقاٌ استفاده کنیم مجموعه های مذکور را به ترتیب کد کامل و کدتام کامل می نامند. اگر تعریف کد کامل...
چکیده :فرض کنیم یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...
فرض کنید g یک گراف ساده و غیر جهت دار با مجموعه رئوس v(g) باشد. مجموعه s?v(g) را یک مجموعه احاطه گر می نامیم، هرگاه هر راس در مجموعه v-s با بعضی رئوس s مجاور باشد. مجموعه s را یک مجموعه احاطه گر کلی می نامیم، هرگاه هر راس از مجموعه رئوس v(g) با بعضی رئوس s مجاور باشد و g[s]راس تنها نداشته باشد . عدد احاطه گر کلی برابر است با کمترین اندازه یک مجموعه احاطه گر کلی و با ?_t (g) نمایش می دهیم. گراف ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید