نتایج جستجو برای: پلازمید psvm

تعداد نتایج: 69  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم 1392

اینترفرون ها نخستین بار در سال 1957 شناسایی گردیده و واژه ی اینترفرون فعالیت زیستی مواد محلولی را تعریف نموده که در فرایند همانندسازی ویروس ها تداخل ایجاد می نمایند. اینترفرون ها در پاسخ به انواع آنتی ژن ها از جمله rna ویروسی، تولیدات باکتریایی و پروتئین های توموری بیان می گردند. به طور کلی اینترفرون ها را بر اساس توالی اسیدآمینه ای به سه گروه ifn?، ifn? و ifn? تقسیم می کنند. اینترفرون ها واجد ...

2007
Qiuge Liu Qing He Zhongzhi Shi

Proximal SVM (PSVM), which is a variation of standard SVM, leads to an extremely faster and simpler algorithm for generating a linear or nonlinear classifier than classical SVM. An efficient incremental method for linear PSVM classifier has been introduced, but it can’t apply to nonlinear PSVM and incremental technique is the base of online learning and large data set training. In this paper we...

2007
Edward Y. Chang Kaihua Zhu Hao Wang Hongjie Bai Jian Li Zhihuan Qiu Hang Cui

Support Vector Machines (SVMs) suffer from a widely recognized scalability problem in both memory use and computational time. To improve scalability, we have developed a parallel SVM algorithm (PSVM), which reduces memory use through performing a row-based, approximate matrix factorization, and which loads only essential data to each machine to perform parallel computation. Let n denote the num...

2007
Haibin Cheng Pang-Ning Tan Rong Jin

Nonlinear Support Vector Machines employ sophisticated kernel functions to classify data sets with complex decision surfaces. Determining the right parameters of such functions is not only computationally expensive, the resulting models are also susceptible to overfitting due to their large VC dimensions. Instead of fitting a nonlinear model, this paper presents a framework called Localized Sup...

2015
Fenghua Huang

Machine learning applied to large-scale remote sensing images shows inadequacies in computational capability and storage space. To solve this problem, we propose a cloud computing-based scheme for learning remote sensing images in a parallel manner: (1) a hull vector-based hybrid parallel support vector machine model (HHB-PSVM) is proposed. It can substantially improve the efficiency of trainin...

2008
Thanh-Nghi Do Jean-Daniel Fekete François Poulet

Résumé. Les algorithmes de boosting de Newton Support Vector Machine (NSVM), Proximal Support Vector Machine (PSVM) et Least-Squares Support Vector Machine (LS-SVM) que nous présentons visent à la classification de très grands ensembles de données sur des machines standard. Nous présentons une extension des algorithmes de NSVM, PSVM et LS-SVM, pour construire des algorithmes de boosting. A cett...

2013
Anirban Basudhar Samy Missoum

This paper presents a methodology to calculate probabilities of failure using Probabilistic Support Vector Machines (PSVMs). Support Vector Machines (SVMs) have recently gained attention for reliability assessment because of several inherent advantages. Specifically, SVMs allow one to construct explicitly the boundary of a failure domain. In addition, they provide a technical solution for probl...

2016
Ghim Siong Ow Vladimir A. Kuznetsov

The field of personalized and precise medicine in the era of big data analytics is growing rapidly. Previously, we proposed our model of patient classification termed Prognostic Signature Vector Matching (PSVM) and identified a 37 variable signature comprising 36 let-7b associated prognostic significant mRNAs and the age risk factor that stratified large high-grade serous ovarian cancer patient...

2016
Kuruvachan K. George C. Santhosh Kumar K. I. Ramachandran Ashish Panda Amrita Vishwa Vidyapeetham

Making speaker verification (SV) systems robust to spoofed/mimicked speech attacks is very important to make its use effective in security applications. In this work, we show that using a proximal support vector machine backend classifier with i-vectors as inputs (i-PSVM) can help improve the performance of SV systems for mimicked speech as non-target trials. We compared our results with the st...

2012
G. Meena Devi

Parameter selection is one of the important steps involved in any model fitting. In this paper we have used Uniform Design Tables to choose the parameters for PSVM and SVM to classify the data. UD is one of the efficient space filling designs, which spreads the combination of parameters in the space uniformly scattered and generalizes the performance of the model efficiently. This paper compare...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید