نتایج جستجو برای: هیبرید شبکه عصبی مصنوعی

تعداد نتایج: 51176  

سمیه محمودی وانعلیا عاطفه ازانی محمدعلی قربانی,

بارش-رواناب یکی از فرایندهای مهم در مطالعات منابع آب بشمار می‌رود. در این تحقیق فرآیند بارش-رواناب روزانه در حوضه آبریز بالیخ‌لوچای با استفاده از ماشین بردار پشتیبان، شبکه‌ های عصبی مصنوعی، هیبرید موجک-ماشین بردار پشتیبان و هیبرید موجک-شبکه عصبی مورد مطالعه و مقایسه قرار گرفته است. داده‌ های بارش-رواناب روزانه در طول دوره آماری (1379-1387) برای آموزش و صحت‌سنجی مدل‌ ها مورد استفاده قرار گرفت. د...

ژورنال: :تحقیقات منابع آب ایران 0
محمدعلی قربانی دکتری منابع آب/ دانشیار گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران عاطفه ازانی دانشجوی سابق کارشناسی ارشد/ گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران سمیه محمودی وانعلیا دانشجوی سابق کارشناسی ارشد/ گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران

بارش-رواناب یکی از فرایندهای مهم در مطالعات منابع آب بشمار می رود. در این تحقیق فرآیند بارش-رواناب روزانه در حوضه آبریز بالیخ لوچای با استفاده از ماشین بردار پشتیبان، شبکه های عصبی مصنوعی، هیبرید موجک-ماشین بردار پشتیبان و هیبرید موجک-شبکه عصبی مورد مطالعه و مقایسه قرار گرفته است. داده های بارش-رواناب روزانه در طول دوره آماری (1379-1387) برای آموزش و صحت سنجی مدل ها مورد استفاده قرار گرفت. در ح...

عدم وجود آمار و اطلاعات کامل، نمی‌تواند مجوزی برای عدم مطالعه شرایط هیدرولوژیکی یک منطقه و پیش‌بینی‌های درازمدت برای انجام یک پروژه آبی باشد. بنابراین پژوهشگران مختلف روش‌هایی از قبیل آنالیز نسبت‌ها، فرگمنت و توماس فیرینگ را برای بازسازی داده‌های ناقص دبی در ایستگاه‌‌های هیدرومتری به کار برده‌اند. لذا در این پژوهش دقت روش‌‌های مذکور با روش‌‌های رایانه‌ای از قبیل شبکه عصبی مصنوعی، هیبرید عصبی - ...

ژورنال: آبخیزداری ایران 2015
بذرافشان, ام البنین , سلاجقه, علی , فاتحی‌مرج, احمد, مهدوی, محمد ,

  خشکسالی یک رخداد طبیعی تکرار­شونده و موقتی است که ناشی از کاهش بارندگی نسبت به میانگین بلندمدت آن می­باشد و می­تواند در هر اقلیمی رخ دهد. از آنجائی که خشکسالی پدیده‌ای تصادفی و غیرخطی است ، استفاده از مدل‌های استوکاستیک خطی، شبکه عصبی مصنوعی و مدل‌های هیبرید می‌تواند در توسعه نتایج پیش‌بینی مفید باشد. مطالعه حاضر به بررسی کارایی مدل‌های ARIMA، شبکه عصبی مصنوعی و مدل هیبرید آریما - شبکه ع...

ژورنال: آبخیزداری ایران 2015

پیش‌بینی مؤلفه‌های باد از جمله سرعت باد یکی از عوامل مهم به خصوص در بحث تبخیر در یک حوزه آبخیز محسوب می‌گردد. در این مقاله سعی گردید، جهت افزایش کارایی مدل‌های هوش مصنوعی، در پیش‌بینی سرعت باد، دو مدل شبکه عصبی و فازی-عصبی با تئوری موجک ترکیب شده و دو مدل هیبرید جدید ارائه گردید. در این تحقیق با استفاده از برخی پارامتر‌های اقلیمی ایستگاه همدیدی یزد از جمله سرعت باد، دمای متوسط، دمای بیشینه، رطو...

ژورنال: مرتع و آبخیزداری 2014

خشک‌سالی پدیده‌ای است که برای پیش‌بینی آن نمی‌توان از مدل مشخصی استفاده کرد. بر این اساس، محققان تلاش می‌کنند با استفاده از مدل‌های پیشرفته دقت پیش‌بینی‌ها را افزایش دهند. در این زمینه، مدل‌های استوکاستیک خطی، شبکة عصبی مصنوعی، و مدل‌های هیبرید می‌توانند در دقت پیش‌بینی مفید باشند. تحقیق حاضر به بررسی کارایی مدل‌های اتورگرسیو میانگین متحرک تجمعی (ARIMA)، شبکة عصبی مصنوعی مستقیم (DMSNN)، شبکة عص...

پیش­بینی فرسایش­پذیری بادی از طریق ویژگی­های خاک به عنوان گامی اساسی در مدل­سازی فرسایش بادی محسوب می‌شود. این پژوهش با هدف مقایسه کارایی چهار روش مختلف شامل رگرسیون خطی چندمتغیره، شبکه عصبی مصنوعی، شبکه عصبی مصنوعی هیبریدشده با الگوریتم ژنتیک و شبکه عصبی هیبریدشده با الگوریتم بهینه‌سازی وال در مدل‌سازی فرسایش‌پذیری بادی در بخشی از اراضی پیرامون شرقی دریاچه ارومیه انجام شد. برای این منظور، 96 ن...

ژورنال: :مرتع و آبخیزداری 2014
ام البنین بذرافشان علی سلاجقه احمد فاتحی مرج محمد مهدوی جواد بذرافشان

خشک سالی پدیده ای است که برای پیش بینی آن نمی توان از مدل مشخصی استفاده کرد. بر این اساس، محققان تلاش می کنند با استفاده از مدل های پیشرفته دقت پیش بینی ها را افزایش دهند. در این زمینه، مدل های استوکاستیک خطی، شبکة عصبی مصنوعی، و مدل های هیبرید می توانند در دقت پیش بینی مفید باشند. تحقیق حاضر به بررسی کارایی مدل های اتورگرسیو میانگین متحرک تجمعی (arima)، شبکة عصبی مصنوعی مستقیم (dmsnn)، شبکة عص...

منابع آب زیرزمینی یکی از مهم­ترین منابع تأمین آب می­باشند، از این­رو مدل­سازی آن­ها بسیار حائز اهمیت می­باشد. ارزیابی و پیش­بینی تراز آب زیرزمینی به پیش­بینی منابع آب زیرزمینی کمک می­کند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیش­بینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید