نتایج جستجو برای: نگاشت خطی دوسویی

تعداد نتایج: 33647  

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1392

در این پایان نامه شرح کاملی از نگاشت های خطی دوجداساز بین فضاهای توابع لیپشیتس برداری مقدار ارائه می دهیم و از نتایج آن برای مطالعه پیوستگی خودکار چنین نگاشت هایی و همچنین طولپایی های خطی پوشا روی این فضاها استفاده می کنیم. فضای باناخ همه توابع کراندار و لیپشیتس را فضای لیپشیتس بزرگ تعریف می کنیم و نرم این فضا را نرم مجموع یا ماکزیمم در نظر میگیریم. زیرفضای بسته از این فضا را زیرفضای کوچک لیپشی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده ریاضی 1392

فرض کنید a و b دو جبر باناخ باشند. نگاشت ? از a بروی b را طیف- نگهدار گویند هرگاه، برای هر a از جبر a داشته باشیم؛ (a) ? = (?(a)) ?. به این سوال باز که از تحقیقات کاپلانسکی نشأت می گیرد و توسط آپتیت به این فرم در آمده است توجه کنید. آیا یک نگاشت خطی دوسویی طیف- نگهدار بین جبرهای باناخ نیم ساده یک دار لزوماً یک همریختی جردن است؟ حتی در مورد c* _ جبرها جواب ناشناخته است. در صورتی که می دانیم، در ...

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران 1389

در این پایان نامه نگاشت های خطی پوشا روی (b(h که حافظ وارون پذیری تعمیم یافته هستند و نیز نگاشت های خطی پوشاحافظ عملگرهای فردهلم (نیمه فردهلم)را بررسی می کنیم به ویژه جوابی برای سوال مختا می یابیم و نشان می دهیم یک فضای باناخ x و یک نگاشت خطی یکانی دوسویی f روی (b(h حافظ وارون پذیری تعمیم یافته در دوسو وجود دارد به طوری که ایده آل همه عملگرهای فشرده روی x تحت f پایا نیست.بعلاوه نشان می دهیم که ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه 1393

در این پایان نامه ثابت شده که یک نگاشت خطی حافظ طیف دو سویی روی دو جبر باناخ ماتریسی، یک همریختی جردن است.

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1392

فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1389

فرض کنیم a و b دو جبر مختلط و t از a به b یک نگاشت خطی باشد. t را جداکننده مینامیم اگر برای هر x و y در a و b ِ حاصلضرب xy=0 نتیجه دهد txty=0 . در این پایرض کنیم a و b دو جبر مختلط ان نامه راجع به فضای توابع پیوسته ی برداری مقدار روی فضاهای موضعا فشرده x و y بحث میکنیم و بعد از ارایه ی بعضی خواص این فضاها نگاشت هایی را در نظر می گیریم که رابطه ی جداکنندگی بین این فضاها را بررسی می کند.نشان میدهی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1392

در این پایان نامه هیلبرت مدول روی c*-جبر موضعی را مورد مطالعه قرار میدهیم و در حالت خاص نشان می هیم اگر a و b دو c*-جبر موضعی باشند و e هیلبرت a-مدول پر باشد و fهیلبرت b-مدول پر باشد در این صورت نگاشت خطی دوسویی l از a به b عملگر یکانی از e به f است اگر وتنها اگر نگاشت lاز a به b با برد بسته وجود داشته باشد بطویکه شرایط زیر برقرار باشد ??(?), ?(?)? = ?(??, ??) , ?(?a) = ?(?)?(a).

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان - دانشکده علوم پایه 1393

ر این پایان نامه‏، پاسخی مثبت به حالت خاصی از مسئله‎‎‎‎ آیوپتیت خواهیم داد که خود ریشه در مسئله کاپلانسکی دارد و به صورت زیر مطرح شده است:‎ ‎“‎آیا یک نگاشت خطی حافظ طیف دوسویی بین دو جبر باناخ نیم ساده یکدار لزوما یک همریختی جردن است؟‎” پاسخی مثبت به این سوال را، در قالبی به دست می آوریم که یکی از این دو جبرباناخ، دلخواه است و دیگری شامل مجموعه ای از ماتریس های 2×2 است

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1392

فرض کنیم[0،1) ? ? و e یک فضای باناخ و (x, d) یک فضای متریک موضعا فشرده باشد وlip0(x، e) فضای توابع لیپ شیتس کوچک e- باناخ مقدار تعریف شده بر فضای متریک هولدر موضعا فشرده( x , d^? )باشد که در بی نهایت صفر می شوند. در این پایان نامه نشان می دهیم، هر دوسویی خطی دوجداساز t:lip0(x,e) ? lip0(y,f)یک عملگر ترکیبی وزن دار به صورت t(f(y))=h(y)(f(p(y))), (f ?lip0(x,e), y ? y) است که در آن به ازای هر...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید