نتایج جستجو برای: نگاشت باناخ استون قوی
تعداد نتایج: 17257 فیلتر نتایج به سال:
در این پایان نامه شرح کاملی از نگاشت های خطی دوجداساز بین فضاهای توابع لیپشیتس برداری مقدار ارائه می دهیم و از نتایج آن برای مطالعه پیوستگی خودکار چنین نگاشت هایی و همچنین طولپایی های خطی پوشا روی این فضاها استفاده می کنیم. فضای باناخ همه توابع کراندار و لیپشیتس را فضای لیپشیتس بزرگ تعریف می کنیم و نرم این فضا را نرم مجموع یا ماکزیمم در نظر میگیریم. زیرفضای بسته از این فضا را زیرفضای کوچک لیپشی...
قابها-p روی فضاهای باناخ توسیع مستقیمی از قابها روی فضاهای هیلبرت می باشند. برخلاف انواع دیگر قابها، نگاشت -قابها به دلیل خطی نبودن نگاشت دوگانی، خاصیت خطی و عملگری خود را از دست داده و مانند یک نگاشت غیر خطی -p قاب مانند -pقابها خواصی از نگاشت -p به دوگان آن عمل می کند. در این مقاله با گذاشتن شرایطی روی X از فضای باناخ ،$T^{perp}$با الحاق عملگر U بطور ضعیف پیوستگی، یکن...
در سال 1972 آلفسن و افراس برای اولین بار مفهوم m-ایده آل را برای فضاهای باناخ تعریف کردند. در این پایان نامه ابتدا به بررسی مفهوم m-ایده آل می پردازیم وسپس مثال هایی از m-ایده آل ها در فضاهای باناخ مختلف را بررسی می کنیم. در ادامه کار محک هایی را برای شناسایی m-ایده آل ها معرفی می کنیم. تمرکز اصلی ما روی این مطلب قرار دارد که چه نگاشت هایی حافظ m-ایده آل هستند و مشاهده می شود که یکریختی های حاف...
در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.
در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.
فرض کنیم[0،1) ? ? و e یک فضای باناخ و (x, d) یک فضای متریک موضعا فشرده باشد وlip0(x، e) فضای توابع لیپ شیتس کوچک e- باناخ مقدار تعریف شده بر فضای متریک هولدر موضعا فشرده( x , d^? )باشد که در بی نهایت صفر می شوند. در این پایان نامه نشان می دهیم، هر دوسویی خطی دوجداساز t:lip0(x,e) ? lip0(y,f)یک عملگر ترکیبی وزن دار به صورت t(f(y))=h(y)(f(p(y))), (f ?lip0(x,e), y ? y) است که در آن به ازای هر...
در این پایان نامه مفهوم های منظمی, یعنی زیرمنظمی متری, زیرمنظمی قوی متری, منظمی متری, منظمی قوی متری را برای نگاشت های مجموعه مقدار بیان می کنیم. علاوه بر این ویژگی های زیرمنظمی زیردیفرانسیل تابع های محدب نیم پیوسته پایینی را در فضاهای باناخ مطالعه می کنیم, زیرمنظمی متری و زیرمنظمی قوی متری زیردیفرانسیل را به طور دقیق مورد بررسی قرار می دهیم, و هرکدام از این دو ویژگی را بر حسب شرط رشد تابع مشخص...
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و ρ:a→b نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه ρ همریختی جردن است
با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید