نتایج جستجو برای: معادله انتگرال ولترا با هسته منفرد ضعیف

تعداد نتایج: 672014  

ژورنال: :پژوهش های نوین در ریاضی (علوم پایه سابق) 0
m. adabitabar firozja department of mathematics, qaemshahr branch, islamic azad university, qaemshahr, iran b. agheli department of mathematics, qaemshahr branch, islamic azad university, qaemshahr, iran

روش های زیادی برای حل عددی معادلات انتگرال وجود دارد. در این مقاله یک روش عددی ساده با استفاده از تبدیل فازی، برای حل عددی معادله انتگرال با هسته منفرد ضعیف ارائه شده است. در پایان نیز با ارائه سه مثال موثر بودن روش پیشنهادی بررسی گردید. در تمامی محاسبات و نمودارها از نرم افزار متمتیکا استفاده شده است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1392

عملکرد روش های هم محلی اسپلاینی را برای یک خانواده از معادلات انتگرال ولترای به طور ضعیف منفرد بررسی می کنیم. نشان می دهیم که اگر جواب دقیق معادله در شرایط خاصی صدق کند، با انتخاب مشخصی از پارامترهای هم محلی، می توان نتایج فوق همگرایی به دست آورد. این ویژگی، در نظریه روش های هم محلی برای معادلات از نوع آبل برقرار نیست. در پایان چندین مثال عددی ارایه می شود که نتایج نظری را شرح می دهند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران 1380

در این تحقیق کاربرد روش های تبدیل متغیر از نوع سایدی و لوریه در حل عددی معادلات انتگرال ولترای نوع دوم با هسته های پیوسته و منفرد ضعیف بررسی شده است. چون تبدیلات بگونه ای هستند که لازم نیست نقاط انتهایی بازه انتگرال گیری به عنوان نقاط شبکه ای در نظر گرفته شوند، روش ارائه شده می تواند برای هر دو نوع معادلات انتگرال ولترای با هسته پیوسته و منفرد ضعیف به شیوه مشابهی بکار رود. نتایج عددی به دست آمد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مراغه - دانشکده علوم پایه 1392

در این پایان نامه خواص همگرایی روش های هم محلی و هم محلی تکراری اسپلاینی، برای یک معادله انتگرال ولترای به طور ضعیف منفرد را بررسی می کنیم، این کار روش های عددی مربوط به مطالعات قبلی در مورد این نوع معادلات با هسته غیر فشرده را تکمیل می کند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1391

در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - پژوهشکده علوم پایه کاربردی 1393

در این پایان نامه، یک معاددله ولترا-هامرشتین غیرخطی منفرد ضعیف نوع دوم که با یک عملگر فشرده تعریف شده ارائه شده است و یک درونیاب نوع نیستروم از جواب بر پایه نقاط گاوس-رادو ارائه می دهیم. همچنین همگرایی دورنیاب را اثبات کرده و تقریبهای همگرایی را ارائه می دهیم. برای معادلات جبری غیر خطی، سرعت همگرایی را با استفاده از انتقال هموار بهبود می بخشیم. همچنین برای نشان دادن کارایی و دقت روش پیشنهادی چن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی 1390

دراین پایان نامه نظر به اهمیت معادلات انتگرال ولترای خطی در حل مسائل فیزیک ،مهندسی و ... ، روش های کالوکیشن و کالوکیشن تکراری جهت حل معادلات انتگرال ولترای منفرد ضعیف مورد بررسی قرار می گیرند . سپس در ادامه در موردهمگرایی این روشها مطالب مفیدی بیان خواهد شد . در پایان نتیجه میگیریم که اگر جواب دقیق در برخی از فضاهای مناسب وجود داشته باشد ، با استفاده از این روش یک همگرایی قوی میتواند بوجود بیای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1393

هسته معادلات انتگرال دارای نقاط تکین قطری و مرزی ضعیف است.. با استفاده از تکنیک های هموارسازی مناسب و اسپلاین چندجمله ای روی شبکه های یکنواخت رفتار همگرایی مورد مطالعه قرار گرفته است.در این پایان نامه حل عددی معادلات انتگرال خطی ولترا نوع دوم مورد بحث و بررسی است هسته معادلات انتگرال دارای نقاط تکین قطری و مرزی ضعیف است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1392

برای حل معادلات انتگرال دیفرانسیل فردهلم با هسته منفرد ضعیف ابتدا معادله انتگرال دیفرانسل را با کمک فرمولهای تربیع(کوادراتور) بر پایه ضرب انتگرالی باز نویسی می کنیم. سپس یک روش هم محلی چند جمله ای تکه ای را روی یک شبکه مدرج به کار می بریم. با این روش ما قسمت های هموار انتگرال را بااستفاده از درونیابی چند جمله ای تکه ای تقریب می زنیم، و سپس از قسمت های باقیمانده انتگرال دقیق می گیریم.سپس همگرایی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1393

در این پایانامه ، یک روش طیفی هم محلی ژاکوبی برای معادلات انتگرال ولترا از نوع دوم با هسته منفرد ضعیف به فرم کلی زیر مورد بررسی قرار می گیرد y(t)=g(t)+?_0^t?(t-s)^(-µ) k(t,s)y(s)ds در این روش که از مرجع [1] برگرفته شده است ابتدا با استفاده از عملگرهای تبدیل و تغییر متغیرها این معادله را به یک معادله انتگرال جدید که روی فاصله استاندارد [-1,1] تعریف شده است تبدیل می کنیم. بنابراین جواب این ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید