نتایج جستجو برای: معادله انتگرال ولترا با هسته منفرد ضعیف
تعداد نتایج: 672014 فیلتر نتایج به سال:
روش های زیادی برای حل عددی معادلات انتگرال وجود دارد. در این مقاله یک روش عددی ساده با استفاده از تبدیل فازی، برای حل عددی معادله انتگرال با هسته منفرد ضعیف ارائه شده است. در پایان نیز با ارائه سه مثال موثر بودن روش پیشنهادی بررسی گردید. در تمامی محاسبات و نمودارها از نرم افزار متمتیکا استفاده شده است.
عملکرد روش های هم محلی اسپلاینی را برای یک خانواده از معادلات انتگرال ولترای به طور ضعیف منفرد بررسی می کنیم. نشان می دهیم که اگر جواب دقیق معادله در شرایط خاصی صدق کند، با انتخاب مشخصی از پارامترهای هم محلی، می توان نتایج فوق همگرایی به دست آورد. این ویژگی، در نظریه روش های هم محلی برای معادلات از نوع آبل برقرار نیست. در پایان چندین مثال عددی ارایه می شود که نتایج نظری را شرح می دهند.
در این تحقیق کاربرد روش های تبدیل متغیر از نوع سایدی و لوریه در حل عددی معادلات انتگرال ولترای نوع دوم با هسته های پیوسته و منفرد ضعیف بررسی شده است. چون تبدیلات بگونه ای هستند که لازم نیست نقاط انتهایی بازه انتگرال گیری به عنوان نقاط شبکه ای در نظر گرفته شوند، روش ارائه شده می تواند برای هر دو نوع معادلات انتگرال ولترای با هسته پیوسته و منفرد ضعیف به شیوه مشابهی بکار رود. نتایج عددی به دست آمد...
در این پایان نامه خواص همگرایی روش های هم محلی و هم محلی تکراری اسپلاینی، برای یک معادله انتگرال ولترای به طور ضعیف منفرد را بررسی می کنیم، این کار روش های عددی مربوط به مطالعات قبلی در مورد این نوع معادلات با هسته غیر فشرده را تکمیل می کند.
در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...
در این پایان نامه، یک معاددله ولترا-هامرشتین غیرخطی منفرد ضعیف نوع دوم که با یک عملگر فشرده تعریف شده ارائه شده است و یک درونیاب نوع نیستروم از جواب بر پایه نقاط گاوس-رادو ارائه می دهیم. همچنین همگرایی دورنیاب را اثبات کرده و تقریبهای همگرایی را ارائه می دهیم. برای معادلات جبری غیر خطی، سرعت همگرایی را با استفاده از انتقال هموار بهبود می بخشیم. همچنین برای نشان دادن کارایی و دقت روش پیشنهادی چن...
دراین پایان نامه نظر به اهمیت معادلات انتگرال ولترای خطی در حل مسائل فیزیک ،مهندسی و ... ، روش های کالوکیشن و کالوکیشن تکراری جهت حل معادلات انتگرال ولترای منفرد ضعیف مورد بررسی قرار می گیرند . سپس در ادامه در موردهمگرایی این روشها مطالب مفیدی بیان خواهد شد . در پایان نتیجه میگیریم که اگر جواب دقیق در برخی از فضاهای مناسب وجود داشته باشد ، با استفاده از این روش یک همگرایی قوی میتواند بوجود بیای...
هسته معادلات انتگرال دارای نقاط تکین قطری و مرزی ضعیف است.. با استفاده از تکنیک های هموارسازی مناسب و اسپلاین چندجمله ای روی شبکه های یکنواخت رفتار همگرایی مورد مطالعه قرار گرفته است.در این پایان نامه حل عددی معادلات انتگرال خطی ولترا نوع دوم مورد بحث و بررسی است هسته معادلات انتگرال دارای نقاط تکین قطری و مرزی ضعیف است.
برای حل معادلات انتگرال دیفرانسیل فردهلم با هسته منفرد ضعیف ابتدا معادله انتگرال دیفرانسل را با کمک فرمولهای تربیع(کوادراتور) بر پایه ضرب انتگرالی باز نویسی می کنیم. سپس یک روش هم محلی چند جمله ای تکه ای را روی یک شبکه مدرج به کار می بریم. با این روش ما قسمت های هموار انتگرال را بااستفاده از درونیابی چند جمله ای تکه ای تقریب می زنیم، و سپس از قسمت های باقیمانده انتگرال دقیق می گیریم.سپس همگرایی...
در این پایانامه ، یک روش طیفی هم محلی ژاکوبی برای معادلات انتگرال ولترا از نوع دوم با هسته منفرد ضعیف به فرم کلی زیر مورد بررسی قرار می گیرد y(t)=g(t)+?_0^t?(t-s)^(-µ) k(t,s)y(s)ds در این روش که از مرجع [1] برگرفته شده است ابتدا با استفاده از عملگرهای تبدیل و تغییر متغیرها این معادله را به یک معادله انتگرال جدید که روی فاصله استاندارد [-1,1] تعریف شده است تبدیل می کنیم. بنابراین جواب این ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید