نتایج جستجو برای: مشتق کاراتئودوری
تعداد نتایج: 4356 فیلتر نتایج به سال:
تعریف کاراتئودوری از مشتق چنین است:میگوییم تابع $f$ در نقطه $ain D_f$ مشتقپذیر است هرگاه یک تابع $varphi$ وجود داشته باشد که در $a$ پیوسته باشد و برای هر $x$ در یک بازه باز $U$ شامل $a$،[f(x)-f(a)=varphi(x)(x-a).]در این مقاله به بررسی این تعریف از مشتق می پردازیم. نشان می دهیم که با تعریف استاندارد (کوشی) از مشتق معادل است و می تواند در اثبات ساده تری از بعضی قضایای مقدماتی...
تعریف کاراتئودوری از مشتق چنین است:می گوییم تابع $f$ در نقطه $ain d_f$ مشتق پذیر است هرگاه یک تابع $varphi$ وجود داشته باشد که در $a$ پیوسته باشد و برای هر $x$ در یک بازه باز $u$ شامل $a$،[f(x)-f(a)=varphi(x)(x-a).]در این مقاله به بررسی این تعریف از مشتق می پردازیم. نشان می دهیم که با تعریف استاندارد (کوشی) از مشتق معادل است و می تواند در اثبات ساده تری از بعضی قضایای مقدماتی ...
این رساله [cigkk] خود نگاشت تمام ریخت f: ω → ω تعریف شده روی دامنه کراندار ω در فضای هیلبرت تفکیک پذیر نامتناهی البعد h با نقطه ثابت p ϵ ω را مورد بررسی قرار می دهد. افزون بر این برای حالتی که دامنه ω محدب نیز فرض شود تعمیمی از قضیه کارتان –کاراتئودوری-کاپ-وو در بعد نامتناهی ارائه خواهد شد. می توان چنین عنوان کرد این تعمیم و نتیجه گیری قاطع بطور اساسی در جهتی همسو با قسمت یکتایی از لم قدیمی شوا...
در فصل اول ابتدابه بیان تعاریفی مانند فضاهای هیلبرت وباناخ وال پی وسوبولف وتعریف همگرایی قوی وضعیف وتعریف نیم پیوسته پایینی واجباری وتعریف شرط پالایز-اسمال وجواب ضعیف و مشتق جهتی وضعیف ونشاندن سوبولف ونامساویهای یانگ ومینکوفسکی و هولدروتابع کاراتئودوری وقضیه مسیرکوهی بیان شده برای هرمسأله ابتدا نشان میدهیم که مفدار ثابت لانای پایین موجوداست به طوری که بازای هر لاندای کمتراز آن مسأله دارای جواب ...
نظریه پایان های اول که توسط کاراتئودوری ابداع شد یک فشرده سازی از سطوح است. این نظریه علاوه بر کاربرد های طبیعی در توپولوژی وانالیز چندین نتیجه عمیق در نظریه سراسری دستگاه های دینامیکی از سطوح دارد. در این پایان نامه ابتدا پایان های اول را با اثباتی از قضیه کاراتئودوری که یک فشرده سازی از مجموعه های باز همبند ساده در صفحه را با اضافه کردن یک دایره با یک توپولوژی مناسب به ما می دهد معرفی می کنیم...
فرض کنیم h یک فضای هیلبرت و (b(h یک جبر از همه عملگرهای خطی کراندار روی h باشد در این پایان نامه نشان خواهیم داد که اگر h یک فضای هیلبرت نامتناهی بعد باشدآنگاه صفر یک نقطه کاملاً مشتق پذیر جردن تعمیم یافته در (b(h است برای هر فضای هیلبرت h همچنین نشان می دهیم که i یک نقطه کاملاً مشتق پذیر جردن در (b(h است . در ادامه فرض می کنیم a یک زیر جبری از (b(h باشدنفطه z متعلق به a یک نقطه کاملاً مشتق پذیر ...
فرض کنید a یک جبر مثلثی باشد. می گوییم نگاشت دو خطی ?:a×a?a یک دومشتق است اگر نسبت به هر دو مولفه یک مشتق باشد. در این پایان نامه دومشتق جدیدی به نام اکسترمال(extremal) را معرفی می کنیم و نشان می دهیم که تحت شرایط خاصی روی مولفه های جبر a، هر دومشتق a، مجموع یک دومشتق اکسترمال و یک دومشتق داخلی است. سپس، با استفاده از این نتیجه، ساختار دومشتق های جبر های بالا مثلثی بلوکی را مورد بررسی قرار...
در این تحقیق فرض می شود n یک لانه روی فضای باناخ x باشد و alg n یک جبر لانه ای شرکت پذیر باشد.نشان داده می شود اگر یک عنصر غیر بدیهی در n موجود باشد به طوریکه در x تکمیل شده باشد، آنگاه هر مشتق جردن تعمیم یافته جمعی از alg n به خودش یک مشتق تعمیم یافته جمعی است. علاوه بر این شاخصی از مشتق های جردن تعمیم یافته خطی از جبرهای لانه ای روی فضای هیلبرت جدایی پذیر مختلط ارائه می شود.
آنالیز غیر خطی یکی از شاخه های رشته ریاضی است که اهمیت آن بر هیچ ریاضیدانی پوشیده نیست. لذا توجه دانشمندان زیادی را به خود جلب نموده است. این شاخه، در علوم دیگر از جمله گرایش های مهندسی و فیزیک کاربرد فراوان دارد و این به زیبایی و اهمیت آن افزوده است. به عنوان مثال می توان به مبحث نامساوی هااشاره نمود که امروزه دیده می شود دانشمندان زیادی دراین زمینه تحقیق و پژوهش می کنند. یکی دیگر از موضوعات م...
یکی از موضوعات مورد توجه در جبر و آنالیز، مفهوم مشتق و تعمیم هایی از آن روی حلقه ها و جبر های باناخ می باشد. که با توجه به آن می توان نتایجی در مورد این ساختارها بدست آورد. یکی از تعمیم های مشتق، مفهوم مشتق جردن است. هر مشتق یک مشتق جردن است اما عکس آن لزوماً برقرار نیست. این موضوع که تحت چه شرایطی هر مشتق جردن، مشتق است از مسائل مورد توجه می باشد. هراشتاین نشان داده است که روی هر حلقه اول با مش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید