نتایج جستجو برای: مشتق جزیی
تعداد نتایج: 7383 فیلتر نتایج به سال:
روش تفاضلات متناهی یکی از روشهای حل عددی معادلات دیفرانسیل با مشتقات جزئی می باشد. انتخاب شبکه ثابت در این روش برای مسائل شوکدار نتیجه مطلوبی نخواهد داد. روشهای انتخاب شبکه در دهه اخیر به طور نامحدودی برای حل معادلات دیفرانسیلی که تغییرات بزرگی در جواب دارند به کار می رود. همان طور که نشان داده شده است پیشرفتهای مهمی در دقت و کارایی با انتخاب شبکه نقاط به دست می آید، چنانکه نقاط شبکه در جاهایی ...
با توجه به کاربرد فراوان معادلات دیفرانسیل جزئی کسری در زمینه های مختلف علوم و مهندسی، یافتن روش های مناسب برای حل این معادلات، موضوع مورد توجه بسیاری از محققین بوده است. در این پایان نامه یکی از روش های نیمه تحلیلی به نام روش آنالیز هموتوپی برای حل معادلات دیفرانسیل جزئی کسری بکار برده می شود. این روش یک سری نامتناهی و همگرا به پاسخ دقیق مسئله را تولید می کند که جملات آن را می توان به راحتی مح...
در این پایان نامه حل دقیق معادلات دیفرانسیل با مشتقات جزئی غیرخطی با استفاده از روش تابع سینوس-کسینوس را که شامل قضیه، شرایط اولیه و همچنین مثال هایی از کاربرد این روش ها هستند را ذکر می کنیم. ابتدا مفاهیم اساسی معادلات با مشتقات جزئی را که شامل تعاریف و مفاهیم بنیادی این گونه مسائل است را مطرح می کنیم، سپس مسائل هذلولوی، بیضوی و مثال هایی از کاربرد این مسائل را بیان می کنیم و نهایتاً در ف...
در این پایان¬نامه ما یک روش بدون شبکه از خطوط را به¬کار می¬بریم، که با استفاده از توابع پایه¬ای شعاعی معادلات دیفرانسیل با مشتقات جزئی غیرخطی تبدیل به معادلات دیفرانسیل معمولی می شود سپس با استفاده از روش¬ رانگ کوتا مرتبه چهارم جواب مساله را در گام¬های زمانی به¬دست می¬آوریم. دقت روش¬ها بر اساس نرم¬های خطا ارزیابی شده است.
در این پایان نامه مسائلی از نوع مسائل معادلات دیفرانسیل با مشتقات جزئی سهموی مورد بررسی قرار می گیرند. مسائل سهموی به دو دسته مسائل مستقیم و مسائل معکوس دسته بندی شده اند و مثال هایی از این نوع مسائل آورده شده است. در ابتدا معادله واکنش-انتشار، وجود و یکتایی جواب در این معادله و بدوضعی معادله مورد بررسی قرار می گیرد. سپس با استفاده از روش مولیفیکیشن، ضرایب وابسته به فضا در معادله سهموی غیر خطی ...
معادلات دیفرانسیل جزیی کسری در بسیاری از زمینه ها چون بیولوژی ، فیزیک و مهندسی به کار می رود. بنابراین تلاش فراوانی برای حل این معادلات صورت گرفته است.بسیاری از این معادلات جواب دقیقی ندارند؛ به همین دلیل از روشهای عددی و تقریبی برای محاسبه جواب تقریبی آنها استفاده می شود. این پایان نامه مشتمل بر سه فصل است: در فصل اول تاریخچه ای از معادلات دیفرانسیل کسری ، معرفی برخی از توابع خاص وهمچنین برخ...
معادلات دیفرانسیل کسری،بخصوص معادلات دیفرانسیل جزئی کسری کاربردهای زیادی در پردازش انتشار،الکترومغناطیس و علم مواد دارند.دراین پایان نامه روش عناصر متناهی را برای حل معادلات دیفرانسیل جزئی کسری زمان در نظر می گیریم.وجود و یکتایی جواب با استفاده از لم لکس-میلگرام اثبات می شود.یک روش گام زمانی مبنی بر یک قاعده انتگرال گیری معرفی می شود.روش تمام گسسته با استفاده از روش عناصر متناهی مطرح می شود و ت...
معادلات دیفرانسیل جزیی- جبری در مدل بندی بسیاری از مسائل فیزیکی ظاهر می شوند و دارای کاربردهای وسیعی در شاخه های مختلف علوم و مهندسی هستند. در این پایان نامه ابتدا با استفاده از روش نیمه گسسته سازی افقی، اندیس مشتق زمان برای معادلات دیفرانسیل جزیی - جبری خطی تعیین شده اند. با استفاده از گسسته سازی زمانی، اندیس مشتق مکان را برای pdaesخطی تعیین کرده ایم. سپس معادلات دیفرانسیل جزیی- جبری...
این پایان نامه توصیفی از دو مقاله ارائه شده در [1] و [2] می باشد و مشتمل بر پنج فصل و یک پیوست می باشد.در فصل اول ابتدا مقدمه ای بر روش هم محلی و اسپلاین های مکعبی ارائه شده است و سپس به تعاریف و قضایای مورد نیاز در فصول آینده می پردازیم.در فصل دوم تاریخچه ای دررابطه با موضوع آورده شده است. در فصل سوم روش هم محلی اسپلاین های مکعبی را برای حل معادله ی پوآسن باشرایط مرزی دیریکله روی مربع واحد به ...
در چند سال گذشته، یافتن روش های جدید سنتز و تهیه ی ترکیب های ناجورحلقه درخور توجه در شیمی دارویی در حلال های مناسب، ضمن کاستن از تعداد مراحل سنتز، جداسازی و خالص سازی، از اهمیت زیادی برخوردار شده است. افزون بر این، رسیدن به تنوع پذیری در اسکلت شیمیایی و یا استخلاف ها در ساختار ترکیب های ناجورحلقه درخور توجه، کمک شایانی به کشف و ابداع ترکیب های دارویی جدید می نماید. مفیدترین راهبرد برای رسیدن به...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید