نتایج جستجو برای: مسائل اشتورم
تعداد نتایج: 33554 فیلتر نتایج به سال:
در این پایان نامه,کاربرد روش های چندگامی بهبود یافته روی مسائل مستقیم و معکوس را بررسی می کنیم. در ابتدا مسائل اشتورم لیوویل مستقیم را معرفی کرده،سپس روش های چندگامی را بیان می کنبم.در ادامه مسائل اشتورم_لیوویل معکوس را شرح می دهیم. سپس برخی از روش های چندگامی بهبود یافته را در نظر گرفته کاربرد آن ها را در حل این مسائل بررسی می کنیم.
مسایل اشتورم-لیوول که به مسایل مقدار ویژه نیز موسوم هستند در بسیاری از مسایل فیزیکی و مهندسی و ریاضیات کاربردی ظاهر می شوند و بسیاری از معادلات جزو دسته بندی معادلات اشتورم-لیوویل قرار می گیرند یا با تغییراتی قابل تبدیل به معادله اشتورم-لیوویل هستند. هدف از حل این مسایل در حالت مستقیم پیدا کردن مقادیر ویژه و توابع ویژه ی عملگر اشتورم-لیوویل می باشد. در این پایان نامه به حل مسائل اشتورم-لیوویل ک...
بارسلون در سال 1983 برای اولین بار مسائل معکوس معادله اشتورم - لیوویل را مورد مطالعه قرار دادند که ایشان برای اثبات فرمول بارسلون برای معادلات سیم از کسرهای مسلسل استیل - ژس استفاده نموده اند. فرمول اثبات شده توسط بارسلون برای این منظور است که جنس سیم با استفاده از این فرمول تعیین گردد تا صدای دلخواه از آن تولید شود. هدف این پایان نامه، استفاده از مسائل معکوس معادلات اشتورم - لیوویل و به کار...
در این پایان نامه بسط مجانبی مقادیر ویژه متناظر با مسئله اشتورم-لیوویل منظم را بدست می آوریم که در شرط مرزی و اولیه آن پارامتر λ مستقل از x ظاهر شده است. روش کارمبتنی بر جوابهای مجانبی معادله ریکاتی متناظر است که با روش تراجعی جملات آن مشخص شده اند. در حقیقت هدف ما یافتن جواب مجانبی معادله ریکاتی بر حسب توانهای بزرگتر (1تقسیم برλ√)وقتی ∞→ λ به بینهایت می رود، می باشد.
یکی از مباحث مهم که در معادلات دیفرانسیل مورد توجه قرار می گیرد، معادله دیفرانسیل مرتبه دوم می باشد زیرا بیشتر معادلات بدست آمده در علوم مختلف، بصورت معادله مرتبه دوم و یا تقریب بهتر آنها بصورت معادله مرتبه دوم است. عمده ترین معادله مرتبه دوم، معادله اشتورم-لیوویل است که در علوم مختلف به کار می رود. در معادله اشتورم-لیوویل محاسبه مقادیر ویژه و توابع ویژه در حالت های مختلف یکی از مهمترین مباحث...
بدین منظور نخست به گسسته سازی مساله به روش ضمنی کرانک-نیکلسون می پردازیم. سپس به روش جداسازی متغیرها جواب مساله را به صورت حاصلضربی از توابع مجزای معین با متغیرهای مجزا در نظر می گیریم. با جایگذاری جواب مفروض در طرح تفاضلی حاصل از گسسته سازی به یک مساله ی اشتورم-لیوویل گسسته دست می یابیم و سپس با استفاده از خواص مسائل اشتورم-لیوویل گسسته، جواب مساله را به صورت یک سری که جملات آن به صورت مضرب ها...
در این رساله ابتدا به معرفی عملگر خودالحاق l می پردازیم که به صورت l =d/dx (p(x) d/dx) + r(x); lu + φ(x)u = 0. مشخص می شود، و مسئله مقدار ویژه lu + λp(x) = 0, x ∋ (a,b), (1) با شرایط مرزی مجزا α1u(a) + α2u′(a) = 0 |α1| + |α2 > 0, β1u(b) + β2u′(b) = 0 |β1| + |β2| > 0. را مسئله ی اشتورم - لیوویل نامیده و آن را به دو صورت منظم و منفرد مورد بررسی قرار می دهیم. ثابت می کنیم که اگر مقادیر وی...
شارل فرانسوا اشتورم ریاضیدان سوئیسی و ژوزف لیوویل با انتشار مقالاتی در نیمه اول قرن نوزدهم، درباره معادلات دیفرانسیل معمولی خطی مرتبه ی دوم شامل مسائل مقدار مرزی منتشر نمودند که منجر به شاخه جدیدی از ریاضیات بنام نظریه ی طیفی عملگرهای دیفرانسیل شد. تاثیر کار آنان چنان بود که این موضوع به نظریه ی اشتورم-لیوویل معروف شد. یکی از مباحث در نظریه طیفی، محاسبه فرمول اثر می باشد. در این پایان ن...
هدف از این رساله، بررسی و ایجاد مساله معکوس معادلات اشتورم-لیوویل است. در مسایل معکوس طیفی، هدف به دست آوردن ضرایب در معادله با بکارگیری داده های طیفی است. مساله طیفی معکوس را با توسیع نتیجه هاچستات بر اساس روش عملگر تبدیل برای مساله معکوس اشتورم-لیوویل با شرایط مرزی ناپیوسته بحث می کنیم. علاوه بر این، بحث در باره نتایج منحصربفردی عملگر اشتورم-لیوویل را به یک تعداد متناهی از نقاط ناپیوستگ...
در این رساله، مسأله اشتورم- لیوویل با دو شرط مرزی y(0)=y’(1)=0 روی بازه (0,1) مورد بررسی قرار می گیرد. معادله اشتورم- لیوویل دارای پارامترحقیقی (مقدار ویژه)، تابع پتانسیل (کراندار و روی بازه (0,1) انتگرالپذیر) و تابع چگالی ( دو بار بطور پیوسته مشتق پذیر) می باشد. با در دست داشتن فرم حاصلضرب نا متناهی مشتق جواب معادله دیفرانسیل، می توان معادلات دوآل مسأله اصلی را مطرح نمود که این دسته از معادل...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید