نتایج جستجو برای: مسأله مقدار ویژه معکوس
تعداد نتایج: 140811 فیلتر نتایج به سال:
بعلاوه الگوریتم hrou را به یک الگوریتم چند مرحله ای تطبیق پذیر،که malhrou نامیده شده است، توسیع می دهیم که مسائل مقدار ویژه ی معکوس متقارن نامنفی را حل می کند.شرایط کافی جدیدی برای بدست آوردن ماتریس های متقارن نامنفی و m-ماتریس های متقارن ارائه شده است. مثال های عددی زیادی آورده شده اند که این نظریه را با نتایج موجود مقایسه می کند و کارایی این الگوریتم ها را نشان می دهد.
در این پایان نامه قصد داریم به ازای مجموعه ی داده شده ی شامل اعداد حقیقی شرایطی را بیان کنیم، به طوری که تحت این شرایط تحقق پذیر باشد. یعنی ماتریسی نامنفی موجود باشد به طوری که طیف آن را تشکیل دهد. همچنین با استفاده ازقضیه براوئر شرایط کافی جدیدی را بیان می کنیم به طوری که نه تنها تحقق پذیر خواهد بود بلکه می توان ماتریس نامنفی متناظر با مجموعه ی داده شده را تشکیل داد به طوری که طیف این ماتریس ب...
در این پایان نامه مسأله مقدار ویژه معکوس که هدف آن ارائه یک ساختار ماتریسی خاص است بطوری که داده های طیفی آن مشخص و معین باشند، معرفی می گردد. سه سوأل اساسی برای مسأله مقدار ویژه معکوس وجود دارد، بحث تئوری در مورد حل پذیری، بحث عملی در مورد محاسبه پذیری و تحلیل حساسیت. در این پایان نامه بطور خاص به مسأله مقدار ویژه معکوس برای ماتریس های قطری لبه دار متقارن پرداخته می شود. همچنین برای تولید...
مسئله ی مقدار ویژه معکوس در بسیاری از علوم مثل طراحی کنترل، ژئوفیزیک، نظریه مدار، طیف سنج مولکولی کاربرد دارد. یکی از مهمترین کاربردهای این مسئله، استفاده از آن در مبحث تخصیص مقدار ویژه در نظریه کنترل است. به دلیل اهمیت این مبحث در علوم مهندسی، در این پایان نامه ارتباط مسئله تخصیص مقدار ویژه با مسئله ی مقدار ویژه معکوس ماتریسی مورد بررسی قرار گرفته است و سپس با ارائه روشی جدید برای ح...
در این پایان نامه در ابتدا مشخص ساز ی اثر صفر برای ماتریس های نا منفی متقارن از مرتبه پنج را مطرح کرده و در ادامه به مسئله وجود و ساختار ماتریس های نامنفی متقارن با طیف حقیقی می پردازیم همچنین مسئله مقدار ویژه معکوس برای ماتریس ها ی نا منفی متقارن از مرتبه 2 تا 6 را که از مسائل پیچیده در جبر خطی عددی بوده است مطرح کرده و این گونه مسائل را حل می کنیم. حل مسئله مقدار ویژه معکوس برای ماتریس های نا...
این پایان نامه پنج فصل دارد 1-مقدمه 2- تشابه ماتریس های توپلیتس3- ماتریس های توپلیتس خاص 4- مساله مقدار ویژه معکوس ماتریس های توپلیتس 5- برنامه های کامپیوتری
ضیه بروئر که آن را با عنوان قضیه بروئرنوع aمعرفی می کنیم و نشان می دهد چگونه یک مقدار ویژه ی خاص از یک ماتریس بدون تغییر مقادیر ویژه ی دیگر تغییر می کند، نقش مهمی در مطالعه مسئله مقدار ویژه ی معکوس غیرمنفی دارد. قضیه بروئر نوع $ a $ نه تنها نقش اساسی در به دست آوردن شرایط کافی وجود جواب برای مسئله دارد، بلکه در محاسبه ی جواب نیز نقش مهمی ایفا می کند. در این پایان نامه مسئله ی مقدار ویژه ...
مسائل مقدار ویژه، به دو دسته تقسیم می شوند: مسائل مقدار ویژه مستقیم درجه دوم و مسائل مقدار ویژه معکوس درجه دوم. مسئله مستقیم، زمانی که ماتریس ضرایب، داده شده باشد به دنبال یافتن مقادیر ویژه و بردارهای ویژه است. برعکس، مسئله معکوس با داشتن اطلاعات ویژه ای از مقادیر ویژه و بردارهای ویژه، ضرایب ماتریسی را بازسازی می کند. این پایان نامه به یافتن جواب های مسئله مقدار ویژه معکوس درجه دوم اختصاص دارد...
در این پایان نامه مسئله مقدار ویژه معکوس برای ماتریس های نامنفی متقارن مورد بررسی قرار می گیرد. بدین منظور، ابتدا شرط حل پذیری برای مسئله مقدار ویژه معکوس نامنفی حقیقی ارائه شده، سپس ثابت می شود که این شرط برای ساخت ماتریس نامنفی متقارن با طیف داده شده سازگار است. در ادامه روشی برای ساخت ماتریس ژاکوبی نامنفی با استفاده از مقادیر ویژه داده شده ارائه می گردد و در نهایت مثال های عددی ضمیمه می شود.
در این پایان نامه به بررسی روش های حل حالتی خاص و پرکاربرد از مسئله ی مقدار ویژه ی معکوس یعنی، مسئله ی مقدار ویژه ی معکوس آفین می پردازیم. همچنین با تعریف ماتریس های مدادی روش های حل مسئله ی مقدار ویژه ی معکوس آفین را برای ماتریس های مدادی مربعی نیز مطرح می کنیم. در آخر به برخی از کاربردهای این مسئله اشاره نموده و برنامه ی کامپیوتری هر کدام از روش ها را ارائه می دهیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید