نتایج جستجو برای: مدول های هم متناهی
تعداد نتایج: 502394 فیلتر نتایج به سال:
بررسی هم متناهی بودن فانکتورهای توسیع مدول های هم متناهی نسبت به یک ایده آل موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چندین قضیه می پردازیم. بدین منظور فرض کنید r یک حلقه جابجایی و نوتری و i ایده آلی از r باشد. فرض کنید m و n دو –r مدول ناصفر باشند. نشان می دهیم که در حالت های زیر –r مدول های (n,m) ?ext?_r^iبرای هر i?1، -iهم متناهی هستند. m، -r مدولی -iهم متناهی و n متناهی م...
فرض کنید i ایده آلی از حلقه ی نوتری m، r یک r- مدول ناصفر i- هم متناهی و n یک r- مدول ناصفر با تولید متناهی باشد. همچنین فرض کنید یکی از شرایط زیر برقرار باشد: 1. dim m?1 2. dim n?2 در اینصورت نشان می دهیم بازای هر i?0، r- مدول ext_r^i (n,m)، i- هم متناهی است.
ررسی مینیماکس بودن و هم متناهی بودن مدول های کوهمولوژی موضعی موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چند قضیه می پردازیم. بدین منظور فرض کنید $r$ یک حلقه ی جابجایی و نوتری و $i$ ایده آلی از $r$ باشد. فرض کنید $m$ یک $-r$مدول ناصفر باشد. نشان می دهیم که $-n$ امین بعد متناهی برای هر $n in mathbb{n}_{circ}$ به صورت زیر می باشد: $$ f_{i}^{n}(m) := inf leftlb...
فرض کنیدr یک حلقه جا به جایی و نوتری و i یک ایده ال از r باشد. همچنین فرض کنیدm یک r– مدول باشد. دراین پایان نامه ما شرایطی که بر اساس آن ایده آل های اول وابسته مدول کوهمولوژی موضعی به ازای هر iبزرگتر از صفر ، متناهی می باشد را مورد بررسی قرار می دهیم.
در این پایان نامه i یک ایده آل از r و m یک r-مدول است. هدف، اثبات قضایای زیر است: 1)فرض کنیم r حلقه موضعی و p ایده آل اول از r و n>=0 یک عدد صحیح باشد. ثابت می کنیم hii(m) برای هرi<n،آرتینی است اگر و فقط اگر hii(m))p برای هر i<n آرتینی باشد. 2) f-عمق i نسبت به m کوچکترین عدد صحیح مانند r است که مدول کوهمولوژی موضعی ( hri(m برای هر i<n آرتینی باشد. 3)یک اثبات ساده برای i-هم متناهی بودن...
فرض کنیم r یک حلقه نوتری باشد، و فرض کنیم a ایده آلی از r باشد که dim ra=1 و m را r-مدولی متناهی قرار می دهیم. آنگاه هم متناهی بودن و بعضی دیگر از خصوصیات مدول های کوهمولوژی موضعی (h_a^i (m را بررسی می کنیم. برای یک ایده آل دلخواه a وr-مدول دلخواه m که متناهی فرض نمی شود، مدول های کوهمولوژی موضعی آرتینی را مشخص می کنیم. و همچنین، مجموعه اول های هم وابسته مدول های کوهمولوژی موضعی روی حلقه ه...
در این پایان نامه فرض می کنیم r یک حلقه جابجایی، نوتری و i ایده آلی از r و m وn ، -rمدول های غیر صفر باشند. نشان می دهیم که اگر m، -iهم متناهی،n با تولید متناهی و dimn?2 باشد، آنگاه برای هرi?0 ،(n,m) ? ext?_r^iیک -rمدول -iهم متناهی است. بعلاوه نشان میدهیم که اگرdimm?1 ، آنگاه برای هر i?0،-r مدول (n,m) ?ext?_r^i ، -iهم متاهی است. اگرi ایده آلی از r با بعد 1 باشد، یعنی1 dimr/i=، آنگاه برای هر i?0...
در این پایان نامه، نتایج زیر را بررسی خواهیم کرد که تعمیمی از نتایج ملکرسون (1999) می باشند. فرض کنید (r,m) حلقه موضعی نوتری باشد به طوری که r ? روی r صحیح است. فرض کنید i یک ایده آل واقعی از r و a یک rـ مدول آرتینی باشد. در این صورت a مدول i- هم متناهی است اگر و تنها اگر ?(i+?ann?_r )=m. همچنین مثالی ارائه می دهیم که نشان می دهد این مطالب برای حلقه موضعی نوتری دلخواه در حالت کلی برقرار نیست. ب...
فرض کنید r حلقه نوتری و جابجایی باشد. فرض کنید i ایده آلی از حلقه r و t یک r-مدول ناصفر و i-هم متناهی باشد به طوری که1 ?(dim(t. در این پایان نامه نشان می دهیم که برای هر عدد صحیح0 ? ext(n,t),i متناهی مولد است که از آن نتیجه می شود اگرi دارای بعد یک باشد آن گاه برای هر عدد صحیح0? i,j و برای هر r-مدول متناهی مولد m و n که ممل nزیر مجموعه(v(i می باشد(ext(h(m),t متناهی مولد است
هدف از این رساله، مطالعه و بررسی خواص متناهی بودن، آرتینی بودن، صفر شدن و مینیماکس بودن مدول های کوهمولوژی موضعی می باشد. در این خصوص، مفهوم i-لاسکری ضعیف را به عنوان تعمیمی از مفهوم لاسکری ضیف ارائه نموده و نشان می دهیم که اگر m یک r-مدول لاسکری ضعیف و s یک عدد صحیح نامنفی باشد به طوری که به ازای هر i<s، مدول h_i^i (m) لاسکری ضعیف باشد، آن گاه مجموعه ی ایده آل های اول وابسته به h_i^s (m) متناه...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید