نتایج جستجو برای: مدول ضعیف

تعداد نتایج: 16969  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1392

فرض کنید i‎ ایده آلی از حلقه ی نوتری m‎، r‎ یک r- مدول ناصفر i- ‎هم متناهی و n‎ یک r- ‎مدول ناصفر با تولید متناهی باشد. همچنین فرض کنید یکی از شرایط زیر برقرار باشد: 1. dim m?1 2. dim n?2 در اینصورت نشان می دهیم بازای هر i?0‎، r- ‎مدول ext_r^i (n,m)‎، ‎i- هم متناهی است‎.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی 1391

فرض کنید m یک مدول باشد در این صورت m را یک مدول ضربی می نامیم هرگاه هر زیر مدول آن به شکل im باشد که در آن i یک ایده ال در r است. زیرمدول سره n از r- مدول m اول نامیده می شود هر گاه به ازای هر r متعلق به r و هر m متعلق به m که rm متعلق به n داشته باشیم m متعلق به n یا r متعلق به m:n باشد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1390

در این پایان نامه فرض می کنیم r یک حلقه جابجایی، نوتری و i ایده آلی از r و m وn ، -rمدول های غیر صفر باشند. نشان می دهیم که اگر m، -iهم متناهی،n با تولید متناهی و dimn?2 باشد، آنگاه برای هرi?0 ،(n,m) ? ext?_r^iیک -rمدول -iهم متناهی است. بعلاوه نشان میدهیم که اگرdimm?1 ، آنگاه برای هر i?0،-r مدول (n,m) ?ext?_r^i ، -iهم متاهی است. اگرi ایده آلی از r با بعد 1 باشد، یعنی1 dimr/i=، آنگاه برای هر i?0...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم 1391

بررسی هم متناهی بودن فانکتورهای توسیع مدول های هم متناهی نسبت به یک ایده آل موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چندین قضیه می پردازیم. بدین منظور فرض کنید r یک حلقه جابجایی و نوتری و i ایده آلی از r باشد. فرض کنید m و n دو –r مدول ناصفر باشند. نشان می دهیم که در حالت های زیر –r مدول های (n,m) ?ext?_r^iبرای هر i?1، -iهم متناهی هستند. m، -r مدولی -iهم متناهی و n متناهی م...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1392

برای زیرمدول nاز m،زیرمدول kازm را مکمل n گوییم، اگر k بااین خاصیت که با n اشتراک صفر دارد ماکسیمال باشد. زیرمدول kازm را مکمل گوییم،اگر مکمل یک زیرمدول از m باشد. مدول را cs-مدول گوییم، اگر هر زیرمدول مکمل آن جمع وند مستقیمش باشد. مدول را c??-مدول ضعیف گوییم، اگر هر زیرمدول نیم ساده از آن دارای مکملی باشد که جمع وند مستقیمش باشد. در این پایان نامه نشان داده شده که اگر مدول m یک c??-مدول ضعیف ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه 1392

در این پایان نامه به بررسی نتایجی درباره ی مدول های اول، اول ضعیف و ثانی و ارتباط آن ها با یکدیگر می پردازیم. علاوه بر این مدول های ثانی ضعیف را معرفی، ضمن ارائه برخی نتایج به دست آمده، ارتباط آن ها را با مدول های اول ضعیف و ثانی بررسی می کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده ریاضی 1392

ررسی مینیماکس بودن و هم متناهی بودن مدول های کوهمولو‍ژی موضعی موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چند قضیه می پردازیم‎.‎ بدین منظور فرض کنید ‎$r$‎ یک حلقه ی جابجایی و نوتری و ‎$i$‎ ایده آلی از ‎$r$‎ باشد. فرض کنید ‎$m$‎ یک ‎$-r$‎مدول ناصفر باشد. نشان می دهیم که ‎$-n$‎ امین بعد متناهی برای هر ‎$n in mathbb{n}_{circ}$‎ به صورت زیر می باشد: ‎$$ f_{i}^{n}(m)‎ :‎= inf leftlb...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1386

مفهوم مدول به طور ضعیف کوهاپفی به این صورت تعمیم داده شده است؛ مدول m شبه کوهاپفی نامیده می شود اگر برای هر درون ریختی یک به یک f از m، (m/f(m منفرد باشد. این مدول ها به طور وسیع بررسی شده اند. روی حلقه های نا منفرد راست، شرط های معادلی برای یک مدول شبه کوهاپفی بدست آمده است. حلقه ی r نیمه ساده است اگر و تنها اگر هر r- مدول شبه کوهاپفی، کوهاپفی باشد. حلقه ی rنامنفرد راست استاگر تنها و تنها اگ...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1391

مفهوم میانگین پذیری ضعیف برای جبرهای باناخ تعویضپذیر را، ابتدا باده، کرتیس و دلز در سال ???? معرفی کردند. سپس جانسون در سال ???? این مفهوم را برای جبرهای باناخ تعویض ناپذیر ارائه کرد. دلز، قهرمانی و گرونبک در سال ???? بررسی n-میانگین پذیری ضعیف جبرهای باناخ را آغاز کردند و تعداد زیادی از خاصیت های مهم این نوع از جبرهای باناخ را بدست آوردند. یک مسأله جالب مربوط به این نوع جبرها، این است که به ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - پژوهشکده علوم 1391

چکیده: فرض کنیم r یک حلقه جابجایی و یکدار باشد و همه مدول ها یکانی باشند. در این پایان‏نامه، تعمیم‏های گوناگون از ایدآل اولیه و مدول‏های اولیه مورد بررسی قرار می‏گیرند. برای مثال ایدآل i به طور ضعیف اولیه است اگر هرگاه ایجاب کند که یا . همچنین یک زیرمدول سره n از r- مدول m یک زیرمدول به طور ضعیف اولیه است. هرگاه نتیجه بدهد که یا جایی که . در ادامه این پایان‏نامه، ایدآل های تقریباً اولیه و زیرم...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->