نتایج جستجو برای: مدل setar
تعداد نتایج: 120066 فیلتر نتایج به سال:
We consider the usefulness of the two-regime SETAR model for out-of-sample forecasting, and compare it with a linear AR model. A range of newly-developed forecast evaluation techniques are employed. Our simulation results show that time-series data need to exhibit a substantial degree of non-linearity before the SETAR model is favoured on some of these criteria. We find only weak evidence that ...
We compare a number of methods that have been proposed in the literature for obtaining h-step ahead minimum mean square error forecasts for SETAR models. These forecasts are compared to those from an AR model. The comparison of forecasting methods is made using Monte Carlo simulation. The Monte Carlo method of calculating SETAR forecasts is generally at least as good as that of the other method...
The aim of this paper is to analyse the out-of-sample performance of SETAR models relative to a linear AR and a GARCH model using daily data for the Euro effective exchange rate. The evaluation is conducted on point, interval and density forecasts, unconditionally, over the whole forecast period, and conditional on specific regimes. The results show that overall the GARCH model is better able t...
In this paper, we present a new time series model, which describes self-exciting threshold autoregressive (SETAR) nonlinearity and seasonality simultaneously. The model is termed multiplicative seasonal SETAR (SEASETAR). It can be viewed as a special case of a general non-multiplicative SETAR model by imposing certain restrictions on the parameters of the latter model. Related to these restrict...
پیش بینی نرخ تورم در فرآیند سیاستگذاری اقتصادی از حساسیت زیادی برخوردار است و بر این اساس، بالا بردن دقت پیش بینی های کمی و تلفیق آن با معیارهای قضاوتی از ضروریات سیاستگذاری اقتصادی می باشد. این پژوهش در صدد مدلسازی و پیش بینی نرخ تورم با استفاده از مدل های غیر خطی سری زمانی می باشد. از این رو در این پژوهش ابتدا مدل های خطی ar و tgarch و egarch بهینه تخمین زده شدند. در ادامه با آزمون های bds و ...
This paper introduces nonlinear threshold time series modeling techniques that actuaries can use in pricing insurance products, analyzing the results of experience studies, and forecasting actuarial assumptions. Basic “self-exciting” threshold autoregressive (SETAR) models, as well as heteroscedastic and multivariate SETAR processes, are discussed. Modeling techniques for each class of models a...
In this paper we investigate the multi-period forecast performance of a number of empirical selfexciting threshold autoregressive (SETAR) models that have been proposed in the literature for modelling exchange rates and GNP, amongst other variables. We take each of the empirical SETAR models in turn as the DGP to ensure that the ‘non-linearity’ characterises the future, and compare the forecast...
(EEG) from unmedicated children strictly classified as unprovoked typical (3 c/s) absence seizures were selected. The dynamics of spike-and-wave discharges (SWD) were then examined by means of autocorrelation, correlation dimension, averaged pointwise dimension and largest Lyapunov exponent. For one EEG signal with pronounced spike-and-wave (SW) patterns, these measures were used complementary ...
The threshold model allows expression with different Autoregressive Moving Average (ARMA) models sorted according to the value of observations. In this study, nineteen years observed wind speed data have been modeled Self Exciting Threshold (SETAR) model. Two (AR(3)) obtained for situation where was below and above 2.5 m / s previous observation in time series. addition, SETAR (1,3,3) model, it...
در پژوهش حاضر از مدلهای سری زمانی فصلی SARIMA، هالت- وینترز، مدلهای دوخطی BL و مدل دورژیمی غیرخطی خودهمبستگی آستانۀ SETAR برای پیشبینی جریان ماهانۀ ورودی به مخزن سد مارون استفاده شده است. به این منظور، از دادههای ایستگاه آبسنجی ایدنک واقع در استان خوزستان با طول دورۀ آماری 34 سال طی سالهای 1361 تا 1394 استفاده شده است. از تبدیل لگاریتمی برای نرمالسازی دادههای شدت جریان ماهانۀ ایستگاه ه...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید