نتایج جستجو برای: مخروط محدب مجرد
تعداد نتایج: 4106 فیلتر نتایج به سال:
نظریه ی مدولارها روی فضاهای خطی در سال 1950 به وسیله ی ناکانو ارائه شد سپس در سال 1959 توسط یامومورو توسعه داده شد. به علاوه توسعه ی کاملی از این نظریه ها توسط ارلیخ و لوگزامبورگ انجام شد. در سال 2008 چیستیاکوف نظریه ای از فضاهای متریک مدولار ارائه داد. در حال حاضر نظریه مدولارها کاربرد گسترده به ویژه در مطالعه ی فضاهای ارلیخ دارد. این پایان نامه مشتمل بر سه فصل است. در فصل اول مفاهیم و قضایای...
این پایان نامه به بررسی ساختارهایی روی مخروط های موضعاً محدب از جمله برخی خواص جداسازی و مولفه های همبندی و کرانداری روی مخروط های موضعاً محدب می پردازد. مخروط های موضعاً محدب سر و کار با مخروط های مرتبی دارد که لزوماً در فضاهای برداری نشانده نمی شود. یک ساختار توپولوژیکی توسط مفاهیم نظری ترتیب تولید می شود. ما برخی از مفاهیم اصلی برای اثبات ها و جزئیات را به کار خواهیم بست. مفاهیمی چون مخروط مرتب،...
این پایان نامه به بحث در مورد ساختارهای مشبکه ای روی مخروط های موضعاً محدب می پردازد. این ساختارهای مشبکه ای در واقع مخروط های مرتبی هستند که روی آنها یک توپولوژی موضعاً محدب وجود دارد. این امر با معرفی مخروط های موضعاً محدب آغاز می شود. پس از تعریف مخروط های مشبکه ای و مشبکه ای کامل موضعاً محدب مفاهیمی از جمله همگرایی ترتیبی تورها و سری ها، پیوستگی ترتیبی عملگرهای خطی در مخروط های مشبکه ای کامل مو...
عملگرهای یکنوای ماکسیمال و توابع محدب و نیم پیوسته پایینی به روش های متفاوتی با هم در ارتباط می باشند. یک قضیه مربوط به فیتزپاتریک نمایشی برای یک عملگر یکنوای ماکسیمال دلخواه روی یک فضای باناخ ارائه می دهد. ما نمایش عملگرهای یکنوای ماکسیمال توسط توابع محدب و نیم پیوسته پایینی را به عملگرهای یکنوا گسترش می دهیم و نشان خواهیم داد که در فضاهای متناهی البعد عملگرهای یکنوایی که یک نمایش محدب دارند، ...
نطریه مهتری گروهی در سال1977 توسط ایتون و پرلمن ودر سال1988 توسط آندرسون و پرلمن گسترش یافت
روشهای کلاسیک برنامه ریزی ریاضی نامحدب، بر اساس یک تقریب موضعی، نمی تواند در بررسی و حل بسیاری از مسائل بهینه سازی عمومی مورد استفاده قرار گیرند و لذا تعمیم ابزارها و روشهای کلی برای حل این مسائل یک نیاز بدیهی به شمار می رود. بعضی از این روشها بر پایه تحدب مجرد بنا شده اند، یعنی بر اساس نمایش یک تابع نسبتا پیچیده بصورت غلاف بالایی یک مجموعه از توابع ساده متناسب. پایان نامه حاضر، شامل چهار فصل م...
در این پایان¬نامه ساختارهای مشبکه را در مخروط¬های موضعاً محدب بررسی می¬کنیم؛ یعنی مخروط¬های مرتبی که دارای توپولوژی موضعاً محدب می¬¬باشند. مثال¬هایی از اعداد حقیقی توسیع یافته ، مخروط¬هایی از توابع - مقدار و مخروط¬هایی از زیرمجموعه¬های محدب یک فضای برداری موضعاً محدب آورده می¬شود. مفهوم کامل ترتیبی، که در آن زیرمجموعه¬های از پایین کراندار دارای سوپریمم و اینفیمم می¬باشند، جالب توجه است. در نهایت ه...
هدف اصلی این رساله تعمیم برخی نتایج اخیر مربوط به انقباض پذیری مجموعه های موثر و ساده شد? پرتو در مسائل بهینه سازی صریحاً شبه محدب چند ضابطه ای به مسائل بهینه سازی برداری مشابه، شامل نگاشت های هدف مجموعه-مقدار است. به همین منظور، مفهوم خاصی از تحدب تعمیم یافته برای مقادیر دریافتی نگاشت های مجموعه-مقدار در یک فضای خطی حقیقی جزئاً مرتب درنظر گرفته شده، که به طور طبیعی، مفهوم کلاسیک شبه تحدب صریح از...
مفهوم سیستم دوگان، سیستم ناوردا و سیستم ناوردای دوگان را تعریف کرده، سیستم دوگان توابع مجرد را با $ (omega , b(omega , x)) $ نشان خواهیم داد، که در آن $ omega $ مجموعه ای غیرخالی بوده، $ x $ یک فضای موضعاً محدب است و $ b(omega , x) $ عبارت است از تمام توابع $ f in x^{omega} $ که $ f(omega) $ کراندار است. سپس سیستم دوگان توابع مجرد را بررسی کرده و به مطالعه ناورداها ...
در این پایان¬نامه پیش¬ترتیبی ضعیف¬تر از پیش¬ترتیب اصلی در مخروط موضعاً محدب pتعریف کرده و نشان می¬دهیم می¬توان p را به صورت مخروطی از تابع¬های حقیقی- مقدار توسیع¬یافته و نیز مخروطی از زیرمجموعه¬های محدب از یک فضای برداری نمایش داد. همچنین توپولوژی¬هایی ضعیف¬تر از توپولوژی¬های اصلی در مخروط موضعاً محدب تعریف نموده و با استفاده از آن ارتباط بین مولفه¬های همبند و کراندار را بررسی می¬کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید